

U741 – Marriott's Park, Taverham, Broadland Norfolk Flooding and drainage note For M Scott Properties Ltd March 2020

Introduction

This note provides an overview of flooding and drainage in support of the proposed residential led development of a site in Taverham, Norfolk. The note draws on desktop information, the results of an initial intrusive site investigation, a topographical survey, site visit, and a meeting with Anglian Water.

Flooding

The site lies in Flood Zone 1 and is therefore not considered to be at risk of flooding from a main river or other significantly sized watercourse.

The surface water flood map (see extract below) shows a route of predominantly low risk floodwater in the south of the site.

Surface water flood map, from Gov.UK, 12/03/20 © Crown copyright and database rights 2020 Ordnance Survey 100047325

The band of floodwater broadly follows the line of a 'dry valley' and is likely the result of overland flow (during larger storms) shed from the urban area to the south of the site. The floodwater is also likely to comprise rural runoff generated from within the site itself. The direction of flow is broadly northeast towards Breck Farm, then south-east towards Marriott's Way. Marriott's Way is flanked by drainage ditches which will help to convey the water to the watercourse/drain which goes on to flow through Drayton (downstream/south-east of the site).

The surface water flood route will be accounted for through the masterplanning exercise when space will be left to enable water to pass through the site without increasing on or off site flooding. However rather than simply avoiding/managing the existing floodwater, development of the site offers the opportunity to help reduce downstream flooding. This is particularly relevant as Drayton is identified as a Critical Drainage Area (CDA) on Figure 4 of the Norfolk County Council (NCC) Surface Water Management Plan (SWMP).

There is an opportunity to provide attenuation for urban runoff which flows onto the site from beyond its boundaries. The nature and scope of such attenuation would be subject to later stage investigations at the planning stages. However practical, landscaped features (shallow depressions) which trap and hold water (allowing dispersion through evaporation and infiltration) would seem appropriate.

Surface water management

Early investigations have determined suitable infiltration rates for at least part of the site (see appended report). Geological mapping suggests a broadly consistent geology across the site and the testing is likely to be representative of the site wide rates. In the event that more extensive testing demonstrates that a site wide infiltration drainage solution is not appropriate then those areas of the site will be drained via a restricted discharge to the Marriott's Way ditch/watercourse. The maximum rate would be limited to the mean annual greenfield runoff rate.

Regardless of the means of disposal, sufficient on-site storage will be provided in order to manage the 1 in 100 annual probability storm including 40 % climate change allowance.

Sufficient treatment for runoff will be provided in line with the guidance provided in The SuDS Manual (CIRIA report C753).

Wastewater

Anglian Water (AW) owns and maintains the wastewater network serving Taverham. There are a number of public foul water sewers in the vicinity of the site servicing the adjacent development.

Historic correspondence with AW stated that a direct connection to the public wastewater system, in its current form, is likely to have a detrimental effect on the network. This is unsurprising considering the scale of development proposed and corresponding wastewater generated.

The new connection charging rules updated the way in which sewerage providers charge for new connections to their wastewater network. Under the new charging regime each development pays a per connection charge. The funds raised under the new regime are pooled (by AW) and used for carrying out improvements to the wastewater network to cater for growth in the region. The new charging regime helps to remove the variability in sewerage connection charges via the Section 98 process by effectively spreading the cost of improvements throughout a provider's region. This in turn helps to improve site viability by removing what would have previously been classed as an abnormal cost.

The new charging regime means that required improvements (mitigation) in order to accept wastewater from the proposed development into the AW network will be funded and provided by AW.

The strategy for connecting the site to the surrounding adopted wastewater network was discussed with AW at a meeting in 2019. A phased connection strategy with parcels being connected to different points on the surrounding network is supported by AW. This phased approach (a minimum of three points of connection is envisaged) will allow for developmet flows to be suitably distributed across the existing network (avoiding a single point load from the strategic site).

The proposed development is in the catchment of Whitlingham Trowse Water Recycling Centre (WRC), which is reported to have available capacity to treat the flows arising from the proposed development.

Conclusion

During the preparation of this note we have not identified any notable flood risk constraints which would prevent the site from being developed in line with current advice on flood risk and development.

Development of the site offers an opportunity to help reduce off-site flooding in a Critical Drainage Area.

Appended information

Phase 2 Ground Investigation

GEOSPHERE ENVIRONMENTAL

REPORT NUMBER:	3921,GI/GROUND/CS,SG,TP/21.06.19/V1
SITE:	Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL
DATE:	21/06/2019

DOCUMENT CONTROL SHEET

Report Number:	3921,GI/GROUND/CS,SG,TP/21.06.19/V1
Client:	M Scott Properties Limited
Project Name:	Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL
Project Number:	3710,GI,SK
Report Type:	Phase 2 – Ground Investigation
Status	Final
Date of Issue:	21 June 2019

Issued By:

Geosphere Environmental Ltd, Brightwell Barns, Ipswich Road, Brightwell, Suffolk, IP10 OBJ. T: 01603 298 076 / 01473 353 519. W: <u>www.geosphere-environmental.co.uk</u>

Confidentiality, Copyright and Reproduction:

This document has been prepared by Geosphere Environmental Ltd in connection with a contract to supply goods and/or services and is submitted only on the basis of strict confidentiality. The contents must not be disclosed to third parties other than in accordance with the terms of the contract. Geosphere Environmental Ltd accepts no responsibility whatsoever to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

Limit of Reliance:

This report is based on the site findings at the time of the associated walkover/site investigation works and information provided by the client at the time of writing. Should site conditions alter or development proposals alter, a reassessment of the enclosed findings should be undertaken. Refer to Appendix 1 for full details of report limitations.

Prepared By:

Carl Sullivan Assistant Geotechnical Engineer

bSullivan

Reviewed By: Stephen Gilchrist Principal Geotechnical Consultant

mas Powling

Authorised By:

Paul Davies

Director

Thomas Powling Director

Hours Town

REVISION RECORD Revision:

Date: Revision Details:

Prepared By: Admin:

Executive Summary

Project	Geosphere Environmental Ltd was commissioned by M Scott Properties
Description	Limited, to undertake a Phase 2 Site Investigation at Land off Fir Covert Road,
	Taverham, Norfolk, NR8 6HL.
	At the time this report was prepared, it was understood that the proposed
	development comprised of residential properties with associated soft
	landscaped areas including private gardens and car parking facilities.
Site Location /	The site was located at Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL
Description	situated approximately 1.5km to the north of the town centre of Taverham and
	may be located by National Grid Reference (NGR) TG 16031 15569.
Previous	The site formed part of a Phase 1 Desk Study undertaken by Geosphere
Investigation	Environmental Ltd, reference 3551, EC, AR, DS/DESK/LT, GF/28-11-18/V1 dated
	28 November 2018. The findings of the report indicated potential sources of
	contamination to include Made Ground associated with hardstanding tracks
	onsite; a strip of which exists in the north of the site, as well as the potential
	for Made Ground from offsite developments located beyond the eastern site
	boundary. Other sources have been discounted due to their relevance to the
	investigation site.
Site Works	Site works were carried out between 11 February 2019 and 22 May 2019 and
	comprised of the formation of twenty four windowless sampling boreholes,
	installation of seven 50mm ground gas monitoring wells, soil infiltration testing
	within seven machine excavated trial pits, four dynamic probe tests, single
	hand dug trial pit and associated soil logging, sampling and in situ strength
	testing.
Ground	The ground conditions were recorded to be consistent across the site,
Conditions	comprising of nominal amounts of Topsoil overlying superficial deposits of
	Sheringham Cliff Formation (Sand and Gravel). Groundwater level was
	encountered within WS203a and WS205a only during the intrusive works. The
	groundwater strikes were consistent with the thicknesses of clay and therefore
	the groundwater in these locations in considered to be perched.
Gas Monitoring	The results of the ground gas monitoring show no methane generation within
	soils, and limited generation of carbon dioxide. No significant gas flow was
	detected within the wells across the site. Based upon guidance given in CIRIA
	C665, the site is considered to fall within the NHBC green category for low-rise
	housing with underfloor voids, which requires no special protection measures.
Laboratory	Laboratory analysis identified no concentrations of contaminants which were
Results	above guidance threshold values for a residential development with plant
	uptake.

Advanced	Based upon the results of chemical analysis, a very low risk exists for the site
Conceptual Model	and therefore the site may be developed without the need for remediation.
Geotechnical	A minimum foundation depth of 0.75 is applicable within proven granular soils,
Considerations	however borehole location WS204a, encountered a significant thickness of
	cohesive soils at approximate formation depths and therefore a minimum
	foundation depth of 1.0mbgl is applicable. Foundations in this area should also
	be designed to the requirements of NHBC guidance, given the presence of
	trees.
	Recommendations for soil infiltration and roadway design are provided within
	the relevant sections as these vary across the testing locations.
This Executive Sum	mary only provides a summary of the site data and its assessment. It
does not provide	a definitive engineering analysis and is for guidance only. It is
recommended that	the reader reviews the report in its entirety and any material referenced
therein.	

CONTENTS

Page No.

EXECU	JTIVE SUMMARY	3
1.	INTRODUCTION	7
2.	SITE SETTINGS	8
3.	PREVIOUS REPORTS	9
4.	SITE WORKS	10
4.1	Methodology	10
4.2	Scope	10
4.3	Ground Conditions Encountered	10
4.4	Groundwater	11
4.5	Visual and Olfactory Evidence of Contamination	11
5.	LABORATORY TESTING	12
5.1	Methodology	12
5.2	Environmental Testing Suite	12
5.2.1	Quality Control	12
5.2.2	Environmental Testing Suite – Soils	12
5.3	Geotechnical Testing	13
6.	MONITORING	14
6.1	Ground Gas	14
6.2	Groundwater	14
7.	RISK ASSESSMENT	16
7.1	Risk to Human Health	16
7.1.1	Methodology	16
7.1.2	Soil Quality Screening Values	16
7.2	Soil Quality	16
7.2.1	Risk Mitigation	18
7.2.2	Asbestos	18
7.3	Ground Gas	18
7.4	Risk to Controlled Waters	19
7.5	Risk to Plants	19
7.6	Risk to Services - Pipes	19
7.7	Advanced Conceptual Site Model	19
8.	GEOTECHNI CAL CONSI DERATI ONS	21
8.1	Proposed Development	21
8.2	Summary of Ground Conditions	21
8.3	Foundations	21
8.3.1	Ground Desiccation	21

CONTENTS

Page No.

8.3.2	Foundation Options	22
8.3.3	Tree Planting	23
8.3.4	Excavations, Temporary Works and Groundwater Ingress	23
8.4	Floor Slabs	23
8.5	Pavement Design	24
8.6	Soakaway Design	24
8.7	Buried Concrete	25
9.	CONCLUSIONS AND RECOMMENDATIONS	26

APPENDICES

- APPENDIX 1 REPORT LIMITATIONS AND CONDITIONS
- APPENDIX 2 REFERENCES
- APPENDIX 3 DRAWINGS
- APPENDIX 4 COMPARISON OF CONSEQUENCES AGAINST PROBABILITY
- APPENDIX 5 EXPLORATORY HOLE LOGS
- APPENDIX 6 INFILTRATION TEST RESULTS
- APPENDIX 7 GAS AND GROUNDWATER MONITORING DATA
- APPENDIX 8 ENVIRONMENTAL LABORATORY TEST RESULTS
- APPENDIX 9 GEOTECHNICAL LABORATORY TEST RESULTS
- APPENDIX 10 PHOTOGRAPHS

TABLES

Page No.

Table 1 - Ground Conditions	11
Table 2 - Level of Groundwater Encountered	11
Table 3 - Ground Gas Monitoring Results Summary	14
Table 4 – Groundwater Monitoring Results	15
Table 5 - Summary of Soil Analyses and Comparison with Current Screening Values	17
Table 6 - Advanced Conceptual Site Model	20
Table 7 - CBR Compaction (%)	24
Table 8 – Infiltration Testing Results (m/s)	25

1. INTRODUCTION

Geosphere Environmental Ltd was commissioned by the Client, M Scott Properties Limited, to undertake a Phase 2 Ground Investigation for a proposed residential development at Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

It was understood that the site is to be developed into an undisclosed number of residential dwellings with associated soft landscaping and car parking.

The primary objectives of this ground investigation were to:

- Assess the ground conditions at the site;
- Assess the potential risk to human health and the environment based upon the findings of the investigation.

These were achieved by:

- Undertaking an intrusive investigation of the site, based upon the proposed development layout and the scope agreed with the client;
- Logging and sampling the soils on the site and noting any visual or olfactory evidence of contamination;
- Undertaking laboratory chemical analysis of selected soil to assess the soil quality and suitability for the garden areas and assess the likely risks to receptors;
- Installing monitoring wells for ground gas concentration measurements and groundwater level monitoring;
- Creating a Conceptual Site Model and defining suitable remedial/mitigating and verification actions where necessary.

A Proposed Development Plan, Drawing ref. 3710,GI,SK/003/Rev 0 is provided within Appendix 3.

2. SITE SETTINGS

The subject site was situated in Taverham, adjacent and to the south of the A1270 Northern Distributer Road and adjacent to the east of Fir Covert Road. The site may be located by National Grid Reference (NGR) TG 16031 15569.

At the time of this investigation, the site comprised of an irregularly shaped parcel of agricultural land used for livestock grazing purposes. The site generally sloped downwards to the north by approximately 5.0m, sited at approximately 35.0mAOD to 40.0mAOD.

The site boundary was formed to the west by a mix of wooden close-board and metal chain-link fencing approximately 2.0m in height, beyond which was residential property associated with Fir Covert Road. A small section of boundary, to the south, was formed by wooden post and metal wire fencing, beyond which was a soil bund and Fir Covert Road, respectively. The southern site boundary was formed by a line of trees, the majority of which were noted as coniferous. The eastern site boundary was open and undeveloped across agricultural land. The northern site boundary was formed by a wooden post and wire fence, beyond which was a newly planted embankment to the A1270.

Two circular depressions were noted centrally, indicated to depict former tree locations. A towable feed trailer was present towards the north of the site. A line of trees was noted centrally to the site, transecting from east to west, whilst a large number of coniferous trees were noted in the south east of the site.

A Site Location Plan and Site Plan is included within Appendix 3, as Drawing references 3710,GI,SK/001/Rev 0 and 3710,GI,SK/002/Rev 0 respectively.

Photographic records are presented in Appendix 10 of this report.

3. PREVIOUS REPORTS

A Phase 1 Desk Study was undertaken by Geosphere Environmental Ltd, reference 3551, EC, AR, DS/DESK/LT, GF/28-11-18/V1 dated 28 November 2018, which incorporated the subject site and a larger area of land to the east.

The following summary of findings for the above report has been focussed to include those aspects specific to the site area only, and has been disseminated from the above referenced report.

The geological map indicated the site to be underlain predominantly by superficial deposits of the Sheringham Cliffs Formation which comprises of sand and gravel. The superficial deposits were underlain by Chalk Bedrock Formations.

The information about the former uses of the site, indicated that the site has remained agricultural over the historical period studied.

Based upon the findings of the desk study and comparing this to the subject site layout, no significant sources of contamination were noted to exist, however the report recommended undertaking intrusivebased investigation to obtain samples from across the site to assess the general soil quality for use in the proposed residential development.

4. SITE WORKS

4.1 Methodology

This site investigation was carried out in accordance with the practices set out in BS 10175: 2011+A1:2013, (ref. R.6) and BS 5930: 2015 (ref. R.7).

Initially, the location of exploratory holes has been planned, where possible, to give as good as coverage within budgetary constraints whilst targeting any locations highlighted in the desk study and / or site walkover. Further and subsequent intrusive investigation was based upon a site investigation sketch provided by ASD Engineering, reference 1394/GEN001, dated 18 April 2019, targeting specific locations required for engineering assessment.

All exploratory hole locations have been incorporated into an exploratory hole location plan, Drawing reference 3921,GI /004/Rev 0, provided within Appendix 3.

The infiltration testing was undertaken in accordance with the requirements of BRE365:2016 (ref. R.3), which requires a total of three tests to be undertaken, in rapid succession, within each trial pit location over a 24 hour period.

4.2 Scope

Site works were carried out between 11 February and 22 May 2019 and comprised of the following:

- Excavation of twenty-four exploratory holes (WS01 WS19 and WS201, WS202, WS203a, WS204a WS205a and WS206), using Windowless Sampling techniques, extended to depths ranging from 3.0m and 6.0mbgl;
- Installation of seven combined ground gas and groundwater monitoring wells within selected boreholes;
- Six subsequent ground gas and groundwater monitoring visits;
- Excavation of seven machine excavated trial pits (SK01 to SK06 and TP201), together with BRE365 infiltration testing, extending to depths ranging from 1.9m and 2.2mbgl;
- Undertaking of four dynamic probe tests (DP02, DP03, DP05 and DP07) adjacent to their respective Window Sampler locations, extended to a depth of 5.0mbgl;
- Excavation of a single hand dug trial pit (CBR201) to a depth of 0.7mbgl;
- Associated soil logging, sampling and in-situ testing.

4.3 Ground Conditions Encountered

The sequence of the strata encountered during the investigation generally confirms the anticipated geology as interpreted from the British Geological Survey (BGS) digital mapping, at a scale of 1:50,000.

The sequence and indicative thickness of strata are provided in Table 1 below:

Table 1 - Ground Conditions									
Strata	Depth Encoun	tered (mbgl)	Strata Thickness	Composition					
Strata	From	То	(m)						
Topsoil.	0.0	0.25 to 0.70	0.25 to 0.70	ALL EXPLORATORY HOLES Dark brown fine to coarse sand with varying amounts of fine subangular flint gravel.					
Sand and Gravel (Sheringham Cliffs Formation).	0.25 to 0.70	3.00 to 6.00	Unproven	ALL EXPLORATORY HOLES Orangish brown to light brown fine to coarse sand with varying amounts of fine and medium subangular to sub- rounded flint gravel and shell fragments.					
				WS203A, WAS204A AND WS205A With varying thicknesses of yellowish, orangish and greyish brown clay between 1.05m and 4.05mbgl.					

4.4 Groundwater

Groundwater level was encountered within WS203a and WS205a only, during the intrusive works. The groundwater strikes were consistent with the thicknesses of clay and therefore the groundwater in these locations in considered to be perched. A summary of groundwater inflows is presented within Table 2, below:

Table 2 - Level of Groundwater Encountered								
Windowless Sampler Borehole Number	Depth of Water (mbgl)	Depth to clay soils (mbgl)	Total water column of perched groundwater (m)					
WS203a	2.70	3.50	0.80					
WS205a	2.50	2.85	0.35					
	3.85	3.90	0.05					

4.5 Visual and Olfactory Evidence of Contamination

No visual or olfactory evidence of gross contamination was encountered during the ground investigation.

5. LABORATORY TESTING

5.1 Methodology

Representative disturbed were taken at the depths shown on the exploratory hole records and dispatched to the laboratory. The exploratory hole logs are included in Appendix 5.

Samples were collected for environmental purposes in amber glass jars and 1kg plastic tubs and kept in a cool box with cooling aid.

Geotechnical samples were recovered in plastic bulk bags and sealed to prevent moisture loss.

5.2 Environmental Testing Suite

5.2.1 Quality Control

The environmental laboratory used (Derwentside Environmental Testing Ltd) was an accredited laboratory by the United Kingdom Accreditation Service (UKAS), and at least 50% of individual parameters are from methods pending accreditation to the Environment Agency Monitoring Certification Scheme (MCERTS) for the range of analyses undertaken as part of this investigation. The MCERTS performance standard for the chemical testing of soil is an application of ISO 17025: 2005, specifically for the chemical testing of soil.

5.2.2 Environmental Testing Suite - Soils

The suite of chemical analyses has been based upon the findings of the desk study and site walkover, the conceptual model and observations onsite. The chemical analyses were carried out on seven samples of soil. The nature of the analyses is detailed below:

- Metals screen arsenic, cadmium, chromium, lead, mercury, selenium, boron (water soluble), beryllium, copper, nickel, vanadium and zinc;
- Organic screen extractable petroleum hydrocarbons (EPH) and polyaromatic hydrocarbons (PAH) USEPA 16 suite; monohydric phenols;
- Inorganics screen cyanide (total), sulphate (water soluble);
- Others pH, organic matter, asbestos.

A copy of the laboratory test results is included in Appendix 8.

5.3 Geotechnical Testing

The geotechnical testing has been chosen based upon the soils encountered during the site investigation and was undertaken in accordance with BS 1377 at a UKAS accredited laboratory.

The following tests were undertaken:

- Determination of California Bearing Ratio (including soaked method);
- pH and soluble sulphate testing of soils and groundwater.

A copy of the laboratory test results is included in Appendix 9.

6. MONITORING

Combined ground gas and groundwater monitoring wells were installed within six of the exploratory holes. Details of their construction are provided with the exploratory hole logs within Appendix 6.

A summary of the findings has been provided in Table 3 below. The full ground gas and groundwater datasets can be found within Appendix 7.

6.1

Ground gas monitoring was undertaken by a suitably qualified environmental consultant, using a GFM436 landfill gas analyser and a MultiRae Lite Photo-ionisation detector (PID). The main determinants recorded were methane (CH_4) , carbon dioxide (CO_2) , oxygen (O_2) , VOCs as well as flow.

Ground gas monitoring was carried out in accordance with current guidance (ref. R.14). Six consecutive monitoring visits were undertaken over a period of time between 20 February 2019 and 22 March 2019, including falling barometric pressure conditions.

The results of ground gas monitoring are included in Appendix 7 and a summary is presented in Table 3 below:

Table 3 - Ground Gas Monitoring Results Summary								
Location	Methane (CH4)	Typical ConcentrationCarbon DioxideOxygen(CO2) [% v/v](O2) [% v/v]		Flow Rate	VOC	Atmospheric Pressure		
	[% v/v]	(Max.)	(Min.)	(Max.)	(Min.)	(l/hr)	(ppm)	(mb)
WS01	<0.1	0.3	0.1	20.5	20.2	-0.5	0	997 - 1030
WS06	< 0.1	0.9	0.3	20.3	19.6	-0.6	0	997 - 1030
WS08	<0.1	1.0	0.6	20.2	19.4	-0.4	0	997 - 1031
WS11	< 0.1	1.2	0.3	20.3	19.1	-0.6	0	997 - 1032
WS13	<0.1	2.0	0.3	20.1	17.6	-0.6	0	997 - 1032
WS17	< 0.1	1.2	0.4	20.0	19.4	-0.6	0	997 - 1032

6.2

The measured groundwater levels were recorded using a dip meter and the results of monitoring are presented in Table 4 overleaf:

Table 4 – Groundwater Monitoring Results									
Monitoring	Depth of	Groundwate	Groundwater Encountered at (mbgl)						
Well	Monitoring	Visit 1	Visit 2	Visit 3	Visit 4	Visit 5	Visit 6		
	Well	20/02/19	24/02/19	01/03/19	08/03/19	15/03/19	21/03/19		
	(mbgl)								
WS01	2.94	n/m	Dry	Dry	Dry	Dry	Dry		
WS06	3.05	Dry	Dry	Dry	Dry	Dry	Dry		
WS08	3.81	Dry	Dry	Dry	Dry	Dry	Dry		
WS11	3.96	Dry	Dry	Dry	Dry	Dry	Dry		
WS13	3.06	Dry	Dry	Dry	Dry	Dry	Dry		
WS17	3.05	Dry	Dry	Dry	Dry	Dry	Dry		
Notes:							•		

Dry - no groundwater encountered

n/m - not measured

0 - well filled with water

7. RISK ASSESSMENT

7.1 Risk to Human Health

7.1.1 Methodology

The current guidance requires that a conceptual model be formulated, based upon the findings of the research. The conceptual model is limited at this stage to the identification and assessment of potential 'hazards', identified or suspected from the results of the research; the potential 'receptors' that may be affected and the anticipated 'pathways' to those receptors. The findings are summarised in the following subsections.

The guidance proposes a four-stage approach for the assessment of contamination and the associated risks. The four stages are listed below:

- Hazard Identification;
- Hazard Assessment;
- Risk Estimation;
- Risk Evaluation.

7.1.2 Soil Quality Screening Values

The results of the soil analyses have been compared to soil quality screening values where deemed applicable, such as:

- The LQM/CIEH S4ULs for Human Health Risk Assessment, (ref. R.25);
- Defra/CL: AIRE Final C4SLs, (ref. R.24).

Where the concentrations reported by the laboratory analysis (and thus determined onsite) are at or below the respective screening concentrations, they are considered not to pose a risk and are removed from further consideration, unless otherwise stated in the following sections.

Based upon details of the proposed development, the screening values used in this assessment has considered residential end use with plant uptake and a Soil Organic Matter content of 1.0%.

7.2 Soil Quality

Concentrations of analytes tested within soil samples existed below residential with plant uptake screening values, a summary of which can be observed in Table 5 overleaf:

Analyte	Analyte Concen (mg/	-	Screening Value (mg/kg) for Land Use Residential Without	Number of Elevated		
	Minimum	Maximum	Plant Uptake (1% SOM Assumed)	Concentrations		
Arsenic	4	7	37	None elevated		
Boron	<1	< 1	290	None elevated		
Cadmium	<0.2	<0.2	17	None elevated		
Chromium	5	8	910	None elevated		
Copper	< 4	5	2400	None elevated		
Lead	4	17	82-210	None elevated		
Mercury	<1	<1	1.2	None elevated		
Nickel	<3	7	180	None elevated		
Selenium	<3	< 3	250	None elevated		
Zinc	11	31	3700	None elevated		
Asbestos		Asbestos is considered a risk if any positive identification is made. None reported within laboratory results.				
Total PAHs	<1.6	<1.6	Nominal value of 50mg/kg*	None elevated		
Napthalene	<0.1	< 0.1	2.3	None elevated		
Acenapthene	<0.1	< 0.1	210	None elevated		
Acenapthylene	<0.1	< 0.1	170	None elevated		
Flourene	<0.1	< 0.1	170	None elevated		
Phenanthrene	<0.1	< 0.1	95	None elevated		
Anthracene	<0.1	<0.1	2400	None elevated		
Fluoranthene	<0.1	0.12	280	None elevated		
Pyrene	<0.1	< 0.1	620	None elevated		
Benzo [a] anthracene	<0.1	< 0.1	7.2	None elevated		
Chrysene	<0.1	<0.1	15	None elevated		
Benzo [b] fluoranthene	<0.1	0.15	2.6	None elevated		
Benzo [k] fluoranthene	<0.1	<0.1	77	None elevated		
Benzo [a] pyrene	<0.1	<0.1	2.2	None elevated		
Indeno [1,2,3 cd] pyrene	<0.1	<0.1	27	None elevated		
Dibenz [a,h] anthracene	< 0.1	< 0.1	0.24	None elevated		
Benzo [g,h,i] perylene	< 0.1	< 0.1	320	None elevated		

*Where total values exceed the nominal threshold, individual congener, compound or equivalent carbon chain group screening values are assessed further where necessary.

7.2.1 Risk Mitigation

Risks to humans include construction workers, site neighbours and end users of the site. Theoretically, exposure to contaminants can take the form of direct contact with the skin, consumption of contaminants through transfer of contaminants to the food chain, or the inhalation of contaminants through wind-blown soils or vapours.

Results of chemical analysis indicated none of the samples tested to exhibit any elevated contaminants over threshold levels compared with screening values, therefore the risk is considered to be very low and may be removed from further consideration.

The investigation covered an extensive area of the site however, a risk of contamination elsewhere onsite remains. A discovery strategy should be implemented throughout the development of the site and any suspected contaminants subject to assessment by a suitably qualified and experience geo-environmental engineer. This may comprise of additional soil sampling and chemical analysis to quantify its suitability onsite and potential for remediation.

To reduce the risks of exposure and transfer of contaminants during construction, short term mitigations measures should be adhered to and, where applicable, be incorporated into the development Construction Phase Health and Safety Plan or similar document.

7.2.2 Asbestos

Results of asbestos screening did not indicate the presence of asbestos within Topsoil. However, it is recommended that localised discovery strategies are in place for asbestos, should it be discovered within soils during the construction phase. **See 'Additional Information'** section at the end of this report for further information.

If during the construction phase of the development any potential asbestos containing material is discovered within the soils then these should be left in situ, and temporarily fenced off, until its identification and removal/treatment had been established. Works in the immediate areas of the suspected asbestos should cease during this period, until a suitably qualified and authorised person has given permission for works to continue.

7.3 Ground Gas

The results of the soil gas monitoring have been compared with current guidance (refs. R.14 or R.15).

The results show negligible methane generation within soils, and limited generation of carbon dioxide. No significant gas flow was detected within the wells across the site.

On the basis of the recorded methane concentration a gas screening value of $<0.01I_{CH4}$ /hr has been calculated. Similarly, on the basis of the recorded carbon dioxide concentrations a gas screening value of $<0.01I_{CO2}$ /hr has been calculated.

Based upon guidance given in CIRIA C665, the proposed development is considered to represent a Situation B – Low rise housing with a ventilated underfloor void. Based upon the results of gas monitoring, the site falls within a Green category under the NHBC traffic light system, which requires no special gas protection measures.

7.4 Risk to Controlled Waters

Concentrations of contaminants within the soil samples tested were below the respective screening concentrations, therefore, it is considered that there is a very low to negligible risk to controlled waters, hence groundwater analysis was not undertaken during the investigation.

7.5 Risk to Plants

A review of the commonly occurring phytotoxic chemicals boron, copper, nickel and zinc, has been undertaken based upon the now superseded ICRCL guidance. Although the ICRCL trigger threshold levels have been withdrawn, there are no equivalent guidance values for phytotoxicity.

Concentrations of metals were recorded at concentrations below the thresholds considered to have phytotoxic effects.

7.6 Risk to Services - Pipes

A comparison of the laboratory results has been made against the Contaminated Land Assessment Guidance, published by Water UK (ref. R.11). Note, the full range of thresholds given in this guidance have not specifically been tested for.

While no specific protection is envisaged, it is advised that the UK Water Industry Research Guidance (ref. R.11) is adopted and consultation with the local water company is sought prior to laying any services.

7.7 Advanced Conceptual Site Model

Following the findings of the site investigation, the Preliminary Conceptual Site Model for the site has been reviewed and the conclusions are presented in Table 6 overleaf:

Table 6 – Advanced Conceptual Site Model

		PA ⁻	THWA	AYS:			F	RECEF	TORS	S:					
Sources	Root Uptake	Direct Contact	Ingestion	Respiration	Gas Accumulation	Plants	End Users	Structures (Concrete)	Services/Utilities	Construction Workers	Controlled Waters (GW)	Risk Rating	Comments		
Hazardous ground gasses.	N	N	N	U	U	N	Mi	N	N	N	N	LR/NR			a category under the NHBC traffic light special gas protection measures.
Legend:	Probability:				Cons	Consequence (Severity):					Risk Rating:				
See Comparison of Consequence Against Probability within Appendix 4										١	Very High Risk VH				
for Key to Legend.	Negligible (N)				Negligible (N)					High Risk HR					
-	Unlikely (U)				Mild (Mi)						Medium Risk	MR			
	Likely (L) Highly Likely (HL)				Moderate (Mo)						Low Risk	LR			
	Highi	IY LIKE	ery (Hi	_)				Sever	e (S)			Í	Negligible Risk	NR	<u> </u>

8. GEOTECHNICAL CONSIDERATIONS

8.1 Proposed Development

It is understood that the proposed development of the site is to comprise of a number of residential plots, including associated private gardens and vehicle parking, access roads, private driveways and infrastructure.

It has not been detailed as to the number of storeys each residential structure will comprise of, however, it has been assumed these will range from two to three-storeys.

Based upon the above, vertical loadings have been assumed to range from 70kN/m² and 100kN/m².

8.2 Summary of Ground Conditions

Ground conditions were recorded to be consistent across the site, comprising of nominal amounts of Topsoil overlying superficial deposits of Sheringham Cliffs Formation (Sand and Gravel). Bedrock Chalk was not encountered within any of the exploratory Window Sampler Boreholes during the investigation.

Groundwater seepages were encountered within exploratory holes WS203a and WS205a, at depths ranging between 2.5mbgl and 3.85mbgl, respectively. These were consistent with the presence of cohesive strata.

8.3 Foundations8.3.1 Ground Desiccation

Where soils are identified as being non-plastic, they are generally regarded as not having volume change potential and therefore not likely to induce any ground movements associated with changing soil moisture conditions. These soils include granular soils of the Sheringham Cliffs Formation.

Based upon the details of the soils encountered, the soils were largely granular and therefore the risk of desiccation is considered to be negligible. In accordance with NHBC guidance, a minimum foundation depth of 0.75mbgl is applicable.

Thicknesses of clay were encountered within the Sheringham Cliffs Formation at a number of borehole locations (WS203a, WS204a and WS205a), which is likely to represent a localised occurrence rather than being site-wide. Nevertheless, the clay soils in this area should be regarded as high plasticity and high-volume change potential, in accordance with the NHBC guidance. Therefore, a minimum foundation depth of 1.0mbgl is applicable.

Small thicknesses of clay were encountered within WS3a and WS5a, which is not likely to affect the heave potential of the soils, however the thickness of cohesive soils proven within WS204a (1.8m) shall require foundations to be extended to depth. Furthermore, in the presence of trees, foundations should be designed to the requirements of the guidance provided within NHBC Chapter 4.2 (ref. R.22) for example,

based upon the guidance and the presence of adjacent trees (assumed to be Pine), to achieve a minimum foundation depth, foundations should be located at least 7.0m from the nearest tree.

Where foundations cross granular and cohesive strata a nominal amount of reinforcement should be incorporated into their design to account for differential settlement.

It is noted that the above is not applicable in the case of the adoption of a raft or piled foundation. Whilst the NHBC guidance provides outline advice for the stated foundation design, it is recommended that advice from a professional structural engineer is sought.

8.3.2 Foundation Options

The site and ground conditions are considered suitable for the adoption of a conventional spread foundation bearing within the underlying Sheringham Cliffs Formation (Sand and Gravel).

A Nett Allowable Bearing Pressure (NABP) of 130kN/m² would be considered appropriate within the Sheringham Cliffs Formation soils, based upon the results of in situ testing, although care should be taken in the vicinity of WS16 and WS205a, where less dense soils were proven to exist. The NABP is the allowable increase in vertical strength, above existing overburden pressure, which may be calculated on the basis of a soil density of 22kN/m³.

At the above NABP, settlements are unlikely to exceed in the region of 25mm. Settlements in granular soils are likely to be immediate, whereas cohesive soils will exhibit a small amount of immediate settlement together with a larger amount of consolidation settlement, which will occur over a prolonged period of time. In the presence of the less dense soils around WS16 and WS205a, localised ground improvement, i.e. vibro-compaction, may be adopted for the purposes of increasing bearing capacities. It is recommended that a specialist contractor is consulted should this be required.

A minimum foundation depth of 0.75mbgl is considered appropriate based upon the following provisions:

- Where cohesive soils were proven to exist (WS203a, WS204a and WS205a), localised deepening of foundations shall be required (minimum 1.0mbgl) and will need designing in accordance with NHBC Chapter 4.2 "Building near Trees", (ref. R.22). A number of potentially moderate water demand trees exist adjacent to the above areas and the soils are of high-volume change potential;
- Should foundations extend beyond 2.5m due to the influence of trees, an alternative foundation solution should be adopted, i.e. piles.

Should piles be adopted, it is recommended that the design of piles be undertaken by an experienced and competent professional, who will reflect their own experience and expertise on the design of piles.

8.3.3 Tree Planting

To achieve the minimum depth for foundations, tree planting must not exist within an area smaller than 0.2 x the mature height of the tree species. Where cohesive soils are proven, this will increase to 1.0 x the mature height of the tree species.

It is recommended that any future tree planting, which may form part of the proposed development, be undertaken in accordance with the guidelines laid out in the NHBC Standard Chapter 4.2 (ref. R.22).

8.3.4 Excavations, Temporary Works and Groundwater Ingress

All excavations within the Sheringham Cliffs Formation must be assumed to be subject to short term instability and stabilisation methods should be adopted for all excavations within the strata.

Excavations below the water table are likely to be problematic without positive groundwater control, although groundwater was only proven within WS203a and WS205a and was considered as being perched atop partings of clay. It is likely that, should the clay be penetrated the groundwater will dissipate into the underlying granular strata. Localised small-scale dewatering in these areas may nevertheless be required.

Where personnel access is required to any excavation, its stability should be assessed by a suitably qualified and experienced responsible person. For general guidance it is recommended that where access is required to excavations greater than 1.2m depth, they should be fully supported or side slopes battered back to a safe angle of repose.

Further guidance may be obtained from CIRIA document 97, 'Trenching Practice' (ref. R.12).

8.4 Floor Slabs

It is considered that suspended or ground bearing floor slabs may be constructed onto the Sheringham Cliffs Formation.

If adopting ground bearing floors, formations should be adequately proof-rolled and any soft / loose or otherwise unsuitable materials excavated and replaced with a suitable engineered fill.

Differential movement between the floor slab and structural walls and across the floor slab itself, should be anticipated. It is therefore recommended that ground bearing floors are fully debonded from structural load bearing walls and suitably reinforced top and bottom to enable spanning of soft spots.

The detailing of services through or beneath ground bearing floors should incorporate flexible connections and enhanced falls where appropriate.

Further guidance is provided within NHBC Chapter 5, 'Ground floors and substructure', (ref. R.23).

8.5 Pavement Design

Roadway pavements are proposed for the site and they are likely to be constructed on a subgrade of Sheringham Cliffs Formation (Sand and Gravel).

Based upon the description of soils and in reference to Table 5.1 of the Highways Agency's, 'Design Manual for Roads and Bridges, Volume 7, 'Interim advice note Design Guidance for Road Pavement Foundations Draft HD 25' (ref. R.19), an estimated CBR of 20% should be assumed.

A total of five laboratory-based California Bearing Ratio tests were undertaken on the subgrade soils at a depth of 0.5m and 0.6m, three of which were undertaken using the soaked method, at locations considered representative of the site as a whole. The results are provided within Appendix 9 and summarised in Table 7, below:

Table 7 - CBR Compaction (%)					
Test Location	Method	Laboratory CBR (%)			
SK01	UNSOAKED	50 - 86			
	SOAKED	30 - 36			
SK06	UNSOAKED	29 - 31			
	SOAKED	25			
TP201	SOAKED	13 - 15			

It is recommended that once the site has been graded to the appropriate pavement formation level, it is inspected and, if necessary, in situ CBR testing be conducted on the subgrade to confirm the appropriate pavement design, (i.e. to determine the subbase and capping thickness). In addition to which, the formation should be proof-rolled and any soft/loose pockets encountered should be excavated and replaced with well compacted granular fill prior to pavement construction. Requirements for the design of road **pavements are given in the Highways Agency, 'Design Manual for Roads and Bridges, Volume 7.** Interim advice note 'Design Guidance for Road Pavement Foundations Draft HD 25', (ref. R.19).

8.6 Soakaway Design

Planning policy, together with the support of The Environment Agency, recommend the maximum practical use of Sustainable Urban Drainage Systems, (SuDS), within proposals for new developments. There is a requirement that SuDS be installed, where appropriate, in order to limit the amount of surface runoff entering drainage systems and to return surface water into the ground to follow its natural drainage path.

Further guidance, including details of SUDS methods, is provided within CIRIA Report C753 **'The SuDS Manual', 2015** (ref. R.16). **CIRIA 687 entitled 'Planning for SUDS – Making it Happen', published in 2010** (ref. R.17), states that the Flood and Water Management Act 2010 aims to encourage Local Authorities to be responsible for the approval and eventual adoption of SuDS, although adoption of roadways which

include permeable paving is often rejected.

Soakaway testing was undertaken in seven locations at the site and was undertaken in accordance with the guidance provided within BRE Digest **365 'Soakaway Design'**, 2016 (ref. R.3). A summary of the infiltration rates is presented in Table 8 below, and provided in full within Appendix 6:

Table 8 – Infiltration Testing Results (m/s)						
Location	Test 1	Test 2	Test 3			
SK1	2.54 x10 ⁻⁵	2.08 x10 ⁻⁵	1.82 x10 ⁻⁵			
SK2	2.56 x10 ⁻⁶	2.43 x10 ⁻⁶	1.64 x10 ⁻⁶			
SK3	9.01 x10 ⁻⁵	9.38 x10 ⁻⁵	6.01 x10 ⁻⁵			
SK4	6.11 x10 ⁻⁵	4.49 x10 ⁻⁵	1.24 x10 ⁻⁵			
SK5	5.41 x10 ⁻⁶	1.87 x10 ⁻⁶	3.94 x10 ⁻⁶			
SK6	1.85 x10 ⁻⁵	1.70 x10 ⁻⁵	1.89 x10 ⁻⁵			
TP201	6.44 x 10 ⁻⁵	3.36 x 10 ⁻⁵	4.36 x 10 ⁻⁵			

Based upon the results of the infiltration testing, it is recommended that any infiltration infrastructure is designed to the most conservative rate proven around the associated test location.

It is recommended that liaison with the relevant regulatory bodies and third parties (i.e. the LPA, The Environment Agency, Anglian Water) is undertaken at an early stage to ensure any surface water drainage proposals are approved.

8.7 Buried Concrete

The results of chemical tests indicate a sulphate concentration in the soils of between <10mg/l and 260mg/l as a 2:1 water/soil extract with pH values in the range of 5.3 and 7.2.

In consideration of the current usage of the site, it is recommended that 'greenfield **conditions' be assumed** for the purposes of assessing the aggressive chemical environment for concrete classification (ACEC class). The strata encountered is considered to be largely permeable, therefore the classifications relating to 'mobile **groundwater' have been applied in this instance.**

Based upon the above a Design Sulphate, (DS), class of DS-1 is considered applicable across much of the site. An accompanying ACEC classification of AC-1 is also considered applicable, based upon the pH values of the majority of samples.

Further guidance relating to the above classifications is provided within BRE Special Digest 1, (ref. R.2).

9. CONCLUSIONS AND RECOMMENDATIONS

Geosphere Environmental Ltd was commissioned by M Scott Properties Limited, to undertake a Phase 2 Site Investigation at Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

At the time this report was prepared, it was understood that the proposed development comprised of residential properties with associated soft landscaped areas including private gardens and car parking facilities.

The site formed part of a Phase 1 Desk Study undertaken by Geosphere Environmental Ltd, reference 3551,EC,AR,DS/DESK/LT,GF/28-11-18/V1 dated 28 November 2018. The findings of the report indicated potential sources of contamination to include Made Ground associated with hardstanding tracks onsite; a strip of which exists in the north of the site, as well as the potential for Made Ground from offsite developments located beyond the eastern site boundary. Other sources have been discounted, due to their irrelevance to the investigation site.

Site works were carried out between 11 February 2019 and 22 May 2019 and comprised of the formation of twenty four windowless sampling boreholes, installation of seven 50mm ground gas monitoring wells, soil infiltration testing within seven machine excavated trial pits, four dynamic probe tests, single hand- dug trial pit and associated soil logging, sampling and in situ strength testing.

The ground conditions were recorded to be consistent across the site, comprising of nominal amounts of Topsoil overlying superficial deposits of Sheringham Cliffs Formation (Sand and Gravel). Groundwater level was encountered within WS203a and WS205a only, during the intrusive works. The groundwater strikes were consistent with the thicknesses of clay and therefore the groundwater in these locations in considered to be perched.

Based upon guidance given in CIRIA C665, the site is considered to fall within the NHBC green category for low-rise housing with underfloor voids, which requires no special protection measures.

Laboratory analysis identified no concentrations of contaminants which were above guidance threshold values for a residential development with plant uptake. Based upon the results of chemical analysis, a very low risk exists for the site and therefore the site may be developed without the need for remediation.

A minimum foundation depth of 0.75 is applicable within proven granular soils, however borehole location WS204a, encountered a significant thickness of cohesive soils at approximate formation depths and therefore a minimum foundation depth of 1.0mbgl is applicable. Foundations in this area should also be designed to the requirements of NHBC guidance, given the presence of trees.

Recommendations for soil infiltration and roadway design are provided within the relevant sections as these vary across the testing locations.

APPENDICES

Appendix 1 – Report Limitations and Conditions

General Limitations and Exceptions

This report was prepared solely for our Client for the stated purposes only and is not intended to be relied on by any other party or for any other use. No extended duty of care to any third party is implied or offered.

Geosphere Environmental Ltd does not purport to provide specialist legal advice.

The Executive Summary, Conclusions and Recommendations sections of the report provide an overview and guidance only and should not be specifically relied upon until considered in the context of the whole report.

Interpretations and recommendations contained in the report represent our professional opinions, which were arrived at in accordance with currently accepted industry practices at the time of reporting and based upon current legislation in force at that time.

Environmental and Geotechnical Reporting (including Phase 1, Phase 2 and Site Walkovers) Limitations and Exceptions

The comments given in this report and the options expressed herein, are based upon the readily available information collated for the report and an assessment based upon the current guidance which for Phase 1 / Phase 2 report is primarily the Contaminated Land Research (CLR) Report and notable, CLR report 3, **'Documentary research on industrial sites'.**

The report has been prepared in relation to the proposed end use and should another end use be intended, reassessment may be required.

No warranty is given as to the possibility of future changes in the condition of the site.

The opinions expressed cannot be absolute due to the limitation of time and resources imposed by the agreed brief.

With regards to any aspect of land contamination referred to, this is limited to those aspects specifically stated and necessarily qualified. No liability shall be accepted for other aspects which may be the result of gradual or sudden pollution incidents, past or present land uses and the potential for associated contamination migration.

Any Desk Study Report / data has been produced largely from the information purchased from The Landmark Information Group. The information is not necessarily exhaustive and further information relevant to the site may be available from other sources. The information purchased has been assumed to be correct and free from errors. However, there is the possibility that some data may be missing from the report including (but not limited to) unrecorded land uses both onsite and offsite or unrecorded pollution events. No attempt has been made to verify the information.

The accuracy of any map extracts cannot be guaranteed. It is possible that different conditions existed onsite, between and subsequent to the various map surveys provided.

Any site walkover undertaken is a snapshot of the site recording the visually evident conditions at the time of the walkover in the areas readily accessible. It is possible that after the walkover, the site was altered (for example by fly-tipping or groundworks) or before the walkover, the site conditions changed removing evidence of potentially contaminative features (such as oil tanks removed).

Any intrusive works only cover a tiny proportion of the site. Where exploratory holes are positioned by Geosphere Environmental Limited, they are located to give as good a coverage of the site as possible and to target features / proposed land use where applicable whilst allowing for areas that cannot be accessed, Client requested locations and other site / time / budget constraints. Whilst assumptions may have been drawn between exploratory holes on the ground conditions and / or extent or otherwise of any contamination, this is for guidance only and no liability can be accepted on its accuracy.

Foundation design is outside of the remit of Geosphere Environmental Limited unless specifically stated and it is recommended that the services of foundation design specialists are sought as required. Any foundation appraisal contained within the report is limited to foundation optioneering.

Any conceptual site model is based upon the information available at the time of conducting this assessment and is an interpretive assessment of the conditions at the site. Redevelopment and / or further investigation of the site may reveal additional information and therefore alter the conceptual site model and the report conclusions.

Any infiltration testing results are considered to be representative of the ground conditions at the locations tested and at the time of testing. As well as lateral variation in ground conditions, seasonal changes in ground water level may affect the results.

Any post-fieldwork monitoring (including ground gas / groundwater) is a snapshot of the conditions at the time of monitoring.

Appendix 2 – References

- **R.1.** CLR 11, 'Model Procedures for the Management of Contaminated Land: Risk Assessment Procedure', DoE 2004.
- **R.2.** BRE Special Digest 1, **'Concrete in Aggressive Ground, 2005**.
- **R.3.** BRE Digest **365**, 'Soakaway Design', 2016.
- **R.4.** The Environmental Protection Act, Part IIA, Section 78, 1990.
- **R.5.** Environment Act 1995, Section 57, DoE 1995.
- **R.6.** British Standards Institute: BS 10175 'Investigation of Potentially Contaminated Sites', Code of Practice, BSI 2011+A2: 2017.
- **R.7.** British Standards Institute: BS 5930 'Code of Practice for Ground Investigations', 2015.
- **R.8.** Asbestos: The Survey Guide, HSG 264, 2nd Edition, 2012.
- **R.9.** CL:AIRE 'Guidance on Comparing Soil Contamination Data with a Critical Concentration', The Chartered Institute of Environmental Health, May 2008.
- **R.10.** EIC/AGS/CL: AIRE. Soil Generic Assessment Criteria for Human Health Risk Assessment. Contaminated Land: Applications in Real Environments, London, UK, January 2010.
- **R.11.** Contaminated Land Assessment Guidance Protocols, Published by agreement between Water UK and the Home Builders Federation, Published by Water UK, January 2014.
- **R.12.** UKWIR 'Guidance for the Selection of Water Supply Pipes to be Used in Brownfield Sites, August 2010.
- **R.13.** CIRIA Report 97 (Second Edition) 'Trenching Practice', 2001.
- **R.14.** CIRIA Reports 149 to 152, 'Methane and Associated Hazards to Construction', 1995.
- **R.15.** CIRIA Report C665, 'Assessing Risks Posed by Hazardous Ground Gases to Buildings', 2007.
- **R.16.** CIRIA Report C753, 'The SuDS Manual', 2015.
- **R.17.** CIRIA Report C687, 'Planning for SuDS Making it Happen, 2010.
- **R.18.** Environment Agency. Performance Standard for Laboratories Undertaking Chemical Testing on Soil, Version 4, March 2012.
- **R.19.** Highways Agency, 'Design Manual for Roads and Bridges, Volume 7. Pavement Design and Maintenance: Foundations HD 25/94.
- **R.20.** Interim Advice Note 73/06, Revision 1, Design Guidance for Road Pavement Foundations, 2009.
- **R.21.** Road Foundation Design for Major UK Highways, Version 1.0, Transport Research Laboratories, 2006.
- R.22. National House-Building Council, Standards, Chapter 4.2, 2018 'Building Near Trees'.

- R.23. National House-Building Council, Standards, Chapter 5, 2018 'Ground Floors and Substructures'.
- **R.24.** SP1010 Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination, Final Project Report (Revision 2), Contaminated Land: Applications in Real Environments (CL:AIRE) September 2014. Appendix H Lead.
- **R.25.** Land Quality Press, The LQM/CIEH S4ULs for Human Health Risk Assessment, 2015.
- **R.26.** The Environment Agency, Technical Guidance WM3, 'Waste Classification: Guidance on the Classification and Assessment of Waste' 1st Edition, May 2015 (V1.1 May 2018).
- **R.27.** National Roads Authority, Manual of Contract Documents for Highway Works, Volume 1, Specification for Highways Works, Series 600, 'Earthworks', Amendment February 2016.
- **R.28.** British Standards Institute, BS 8485, 'Code of Practice for the Design of Protective Measures for Methane and Carbon Dioxide Ground Gases for New Buildings', 2015.

Appendix 3 – Drawings

Site Location Plan – Drawing ref. 3921,GI,SK/001/Rev 0 Site Plan – Drawing ref. 3921,GI,SK/002/Rev 0 Proposed Development Plan – Drawing ref. 3921,GI,SK/003/Rev 0 Exploratory Hole Location Plan – Drawing ref. 3921,GI,SK/004/Rev 0

Site Location

SOURCE

© OpenStreetMap contributors PROJECT

Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL

TITLE

C

Site Location Plan

DRAWING NUMBER

3710,GI,SK/001/Rev 0

SCALE	DATE
As marked	01/02/2019
DRAWN BY	CHECKED BY
CS	SG

SOURCE

Brown & Co

PROJECT

Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL

TITLE

Site Plan

DRAWING NUMBER

3921,GI/002/Rev0

SCALE

As marked DRAWN B

CS

01/02/2019 CHECKED BY SG

EGEND

SOURCE

Brown and Co

PROJECT

Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL

TITLE

CS

Ν

Proposed Development Plan

DRAWING NUMBER

3921,GI/003/Rev0

SCALEDAAs marked01DDAMANERYCI

01/02/2019 CHECKED BY SG

SOURC

© OpenStreetMap contributors PROJECT

Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL

TITLE

Exploratory Hole Location Plan

DRAWING NUMBER

3921,GI/004/Rev0

SCALEDATEAs marked10/06/2019DRAWN BYCHECKED BCSSG

Appendix 4 – Comparison of Consequences Against Probability

			Consequence (Se	everity of Linkage)	
		Severe (S)	Moderate	Mild	Negligible
			(Mo)	(Mi)	(N)
	Highly Likely	Very High Risk	High Risk	Moderate Risk	Moderate/Low Risk
Ψ	(HL)	(VH)	(HR)	(MR)	(MR-LR)
0 0	Likely	High Risk	Moderate Risk	Moderate/Low	Low Risk
	(L)	(HR)	(MR)	Risk	(LR)
(Likelihood of le from)				(MR-LR)	
(Li Je f	Unlikely	Moderate Risk	Moderate/Low	Low Risk	Negligible Risk
bility (L linkage	(U)	(MR)	Risk	(LR)	(NR)
Probability linka			(MR-LR)		
Lob	Negligible	Moderate/Low	Low Risk	Negligible Risk	Negligible Risk
<u>م</u>	(N)	Risk	(LR)	(NR)	(NR)
		(MR-LR)			

This table is to provide reference information in conjunction with the GEL Conceptual Model attached within the Hazard Risk Assessment section of this report, Table 1 – Conceptual Model.

Very High Risk (VH)

- There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is happening currently.
- Urgent investigation and remediation are likely to be required and advised.

High Risk (HR)

- Harm is likely to arise to a designated receptor from an identified hazard.
- Urgent investigation is required and remedial works are likely necessary in both the short to long term.

Moderate Risk (MR)

- It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild.
- Investigation is required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.

Low Risk (LR)

• It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild. Limited investigation recommended.

Negligible Risk (NR)

• There is a minimal possibility that harm could arise to a receptor. In the event of such harm being realised it is high likely to not be severe. Investigation not deemed necessary.

Appendix 5 – Exploratory Hole Logs

Windowless Sample Hole Logs (WS1 to WS19 / WS201, WS202, WS203a, WS204a, WS205a and WS206)

Soakage Test Pit Logs (SK1 to SK6 and TP201)

Dynamic Probe Logs (DP2, DP3, DP5 and DP7)

Hand dug Trial Pit Logs (CBR201)

CLIENT	: M So	ott	Prope	erti	es Ltd	PROJECT: Land o	ff Fir	Covert	Road			GRO	UND	LEVEL	. m						HOLE No. WS01
LOGGED			_		CHECKED BY: SG	EXCAVATION METHOD		Window		•		Grid	Refer	ence:							SHEET 1 OF 1
FIELDWO TEMPLAT				ETA	DATE:			Uncased	1 to 4.0	Jm			ES 12/			12/	02/2	2019			PROJECT NO. 3921,GI
ate/Time	Depth							Strata		Graphical Representation S			u Testing						esting		Additional Tests and Notes
and Depth	of Casing		of Vater	Piez.	Description o	f Strata	Leg	Reduced	Depth	SPT 'N' Value	Type	No.	Blows	SPT	<425 %	wc	PL %	LL	r	Cu kN/m ²	
Deptil	Casing	_	valei	+				Level		0 10 20 30 40	-	NO.	DIOWS	N	%	%	%	%	Mg/m	' kN/mʻ	-
					TOPSOIL (Dark brown slightly gi SAND)	ravelly fine to coarse			0.00	···· ···· ~~··	-										Borehole remained dry and stable upon completion
					a a di un denne energiale le sur	- l'alatha ann a lla Cira a ta			0.30	0.20-0.30	ES	1									
					Medium dense orangish brown coarse SAND. Gravel is fine sub (SHERINGHAM CLIFFS FORMAT	angular flint.	· • ·		0.50	0.30	1										
					(SHERINGHAM CLIFFS FORMAT	ION)	· · · ·	·		·····	1										
							0]										
_	_						••••	•	_		1										L
							· • ·	·		1.10-	C ES	2	24 34	19							
							• • •			1.20	1		57								
							· • ·				1										
							• • •				1										
				_	Medium dense light brown fine	and medium SAND	• • •	-	1.80		-										
_	L				Medium dense light brown fine (SHERINGHAM CLIFFS FORMAT	ION)	• • • •		_	2	1										-
											c		34 45 55	19							
							• • • •				-		55								
							· · · ·				1										
							• • • •				1										
							••••			····· · ··· · · · · · · · · · · · · ·	-										
-	_								-	3			56	27							-
							••••			· · · · · · · · · · · · · · · · · · · · · · · · · · ·			67	27							
							· · ·	•		· · · · · · / · · · · · · · · ·	1		77								
							• • • •]										
							· · · ·				1										
							• • • •			· · · · · · · · · / · · · · · · ·	1										
-	-			-			• •	-	4.00	4			23	21							Borehole completed at 4.0m
													23 35 67	21							borenoie completed at 4.011
											1		07								
											-										
											1										
											1										
+	-								-	5	-										F
]										
											1										
*******				<u>.</u> +			· <u> </u>	4	<u> </u>												<u> </u>
WATER	¥ Sta ⊈ Wa	ndir ater :	g water strikes	leve	I PIEZOMETER Upper s Respons Lower s	se zone AND B	Bulk d	disturbed sa	ample	S Standard penetration test Blows SP C Cone penetration test (35) Undis	turbed	sample	blow co	ount		G)		5	well Barns
					Lower s			sturbed san n sample	nple	K Permeability test SPT N N N*	: SPT N 120 = T	value (l otal blo	blows af ows/pen	ter sea etràtio	ting) n		II		eospn nit 11	ere ⊨n Bright∖	well Barns
						, L	Distu	rbed jar sar onmental s	nple	inc	luding	seating					C		swich		
					DEPTH All depths, level and	دع thicknesses in metres W	Wate	r Sample	on sampi	re <425 Sa	пріе %	hazziilā	5 423 111	CI UTI SIE	ve			•			

CLIENT	Г: М	Sco	tt Pro	pert	ies Ltd	PROJECT: Land o	off Fir	Covert I	Road					GRO	UND	LEVEL	. m					HOLE No. WS04	
LOGGED FIELDWC					CHECKED BY: SG DATE:	EXCAVATION METHOD):	Window Uncased		•	er			Grid	Refer	ence:						SHEET 1 OF 1	
TEMPLAT				H BETA				Uncased	to 3.0	m				DAT	ES 12/	02/20)19 -	12/0	02/2	019		PROJECT NO. 3921,GI	
Date/Time and Depth	Dep of Casi	of	Depth* of Water	Piez.	Description	of Strata	Leg	Strata Reduced Level	Depth		Graphical Representation SPT 'N' Value	Sa Depths	e		u Testing Blows	g SPT N	<425 %	La WC %			r _{Cu}	Additional Tests and Notes	
and	of	of	of		Description	gravelly fine to coarse ar flint) (fine to coarse SAND. FION)	Leg	Reduced Level	Depth 0.40 - - 2.00 - 3.00			Depths 0.10- 0.60- 0.80 1 - 2 - 3 - 4 - 5 -	ES ES C	No. 1 2	Blows 45 711 1213 44 77 77 78 91 1212	SPT N 43 28 34	<425 %	WC %	PL %		r Cu /m ³ kN/r	^{n²} Borehole remained dry and sta completion Borehole completed at 3.0m Borehole completed at 3.0m	ble upon
*WATER	R ▼ : ∑ ;	Stanc Wate	ling wat r strikes	er leve	el PIEZOMETER Upper Respon Lower	nse zone AND B seal TEST U KEY P J ES	Bulk o Undis Pistor Distur S Enviro	disturbed sa sturbed sam n sample rbed jar sam onmental so	imple iple iple	C Co K Pe	tandard penetration test B one penetration test ermeability test S	(35) PTNN= N*1	Undi SPT N 20 = uding	sturbed I value (Total blo seating	l sample blows af ows/pen	blow co fter seat etràtion	ount ting) า			Unit	11 Brigh	invironmental twell Barns	3921,GI SHEET 1 OF 1 HOLE No.

GEL AGS BH BETA 3921,GI FIR COVERT ROAD, 21-05-19,GPJ GINT STD AGS 3_1.GDT 10/6/19

CLIENT:	: M Sco	ott Pro	perti	ies Ltd	PROJECT: Land o						GRO	UND	LEVEI	. m						HOLE No. WS06	
LOGGED B		лит		CHECKED BY: SG DATE:	EXCAVATION METHOD		Window Uncased		•		Grid	Refer	ence:							SHEET 1 OF 1	
TEMPLATE			BETA				Uncased	10 3.0			DAT	ES 12/	/02/20	<u>)19 -</u>						PROJECT NO. 3921,GI	
Date/Time and Depth	Depth of Casing	Depth* of Water	Piez.	Description o	f Strata	Leg	Strata Reduced Level	Depth	SPT 'N' Value Depths	e	ng/In-Site No.	u Testin Blows	g SPT N	<425 %			LL %	r	Cu kN/m²	Additional Tests and Notes	
and	of	of	Piez.	Description o	ine to coarse SAND. ngular flint) gravelly fine to coarse flint. ON) to coarse SAND.	Leg	Reduced		SPT 'N' Value Depths 0 10 20 30 40 0 0	ES	No.			<425 %	wc	PL	LL	r	Cu kN/m²		
WATER	▼ Stan ¥ Wat	ding wat er strikes	er leve	el PIEZOMETER Upper s Respons Lower s	eal AND B eal TEST U KEY P J	Bulk o Undis Pistor Distur	disturbed s disturbed sa iturbed sam n sample rbed jar sar onmental so	ample aple nple	K Permeability test SPT N N N N	T blow 5) Und = SPT I 120 =	listurbed N value (Total blo g seating	l sample blows at ows/per	blow contraction fter sea	ount ting) n		GEO	l Un	eosphe nit 11 swich	ere En Bright	vironmental well Barns	PROJECT No 3921,GI

GEL AGS BH BETA 3921,GI FIR COVERT ROAD, 21-05-19. GPJ GINT STD AGS 3_1. GDT 10/6/19

LIENT	: M Sc	ott F	roper	rtie	s Ltd	PROJECT: Land	off Fir	Covert	Road					GRC	DUND	LEVEL	. m						HOLE No. WS08	
OGGED E					CHECKED BY: SG	EXCAVATION METHO	D:	Window		•				Grid	Refer	ence:							SHEET 1 OF 1	
IELDWOI EMPLATI				ГΔ	DATE:			Uncased	to 4.0	m			ľ		ES 12/			12/0	2/20)19			PROJECT NO. 3921,G	1
te/Time	Depth	Dep			1		L	Strata		Graphical	Representation		Samplin			-				ry Tes	ting		Additional Tests and Notes	•
and	of	Uep 0 Wa	f∣¦e		Description of	Strata	Leg	Reduced	Depth	SPT	'N' Value	Dept	hs L	No.	Blows	SPT		wc	PL %	LL	r 1g/m³	Cu		
Depth	Casing	VVa		L				Level		0 10 20	30 40	Dept		NO.	BIOWS	N	%	%	%	% N	1g/m ³	kN/m ²	_	
				T S	OPSOIL (Dark brown slightly gr AND. Gravel is fine and mediur	avelly fine to coarse n flint)			0.00														Borehole remained dry and completion	stable upon
													1											
					1edium dense orangish brown	gravelly fine to coarse	· 0 · .		0.45															
				S	AND. Gravel is fine and medium	n subangular flint.	· . · .			•••••	•••••	0.50- 0.60	ES	1										
				(3			· · · ·]											
_	_						• • • •		L	•••••			1										-	
							· · ·				•••••		· -		23 34	14								
				N (S	Aedium dense light brown fine SHERINGHAM CLIFFS FORMATI	and medium SAND.			1.20				1		34									
				(3		~	• • • •			- - -			1											
							· · · ·																	
							••••					1.70- 1.80	ES	2										
-	_						••••		Ļ	·····			2			40							-	
				Lo	oose becoming medium dense ne to coarse SAND. Gravel is fi	light brown gravelly	••••		2.10				1		32 33 34	13								
				fi su	ne to coarse SAND. Gravel is fi ubrounded flint.	ne subangular and	· · · ·						-		34									
				(S	SHERINGHAM CLIFFS FORMATI	ON)	••••						1											
							· · · ·						1											
													-											
_	_								Ļ				3 -										_	
															21 22	8								
							·						-		22									
							· · · ·	•					1											
							••••			\			1											
							• • • •	¢			····		-											
-	-			<u>-</u>			· • ·		4.00		- ` -		4 -		56	28							Borehole completed at 4.0n	
													1		48	20							Borenole completed at 4.00	I
															88									
													-											
													1											
													1											
+	-								F				5 -										-	
													1											
													1											
	_			+ -				-		<u> </u>	····l·····l													
NATER	¥ Star ¥ Wa	nding ter str	water le ikes	vel	PIEZOMETER Upper se			disturbed disturbed s	ample	C Cone pene	enetration test I tration test		PT blow: 35) Undi					00018	Ģ	~		_		SHEET 1 OF 1 HOLE No. WS08
					Respons Lower se		J Undis	turbed sar		K Permeabilit		SPTN N	I = SPT N 1*120 = 1	I value ((blows at	ter seat	ting)			Geo	osphe t 11 F	ere En Brightv	vironmental vell Barns	Э́Е РЕ
						J	Distur	rbed jar sa				i	ncluding	seating	5			BONHENT	Ö		wich	Jugino		
					DEPTH All depths, level and t			onmental s r Sample	oil sample	2	•	<425 S	ample %	passin	g 425 mi	cron sie	eve	ž	~					· ·

LOGGED BY: CS FIELDWORK BY: DRILLT TEMPLATE REF: GEL AGS BH BET and of Of Of Depth Casing Water		medium SAND) ravelly fine to coarse d flint. ION)	Leg	Window Uncasec Strata Reduced Level	d to 4.0	D m Graphical R SPT 'I 0 10 20 	epresentation V' Value 30 40 	Depths 92	DAT ling/In-Sit		/02/201 g SPT <		Laborato	019 ory Testin LL r % Mg/		SHEET 1 OF 1 PROJECT NO. 3921,GI Additional Tests and Notes n ² Borehole remained dry and stable upon completion
TEMPLATE REF: GEL AGS BH BET ate/Time Depth Depth* الم and of of of	ETA Description o TOPSOIL (Dark brown fine and i Dense greyish brown slightly gr SAND. Gravel is fine subrounde (SHERINGHAM CLIFFS FORMAT 0.90 Becomes orangish brown Firm orange brown sandy CLAY (SHERINGHAM CLIFFS FORMAT Medium dense orangish brown SAND. Gravel is fine subangular fragments.	medium SAND) ravelly fine to coarse d flint. ION)	Leg	Strata Reduced	Depth 0.30 0.30	Graphical R SPT 'r 0 10 20	N' Value	Depths 9	DAT ling/In-Sit	ES 12/ tu Testin, Blows 4 7 8 8 8 8 8 8	702/201 g SPT < N 32	425 WC	Laborato	ory Testin		PROJECT NO. 3921,GI Additional Tests and Notes n ² Borehole remained dry and stable upon
and of Depth* Notes	Description o TOPSOIL (Dark brown fine and i Dense greyish brown slightly gr SAND. Gravel is fine subrounde (SHERINGHAM CLIFFS FORMAT 0.90 Becomes orangish brown Firm orange brown sandy CLAY (SHERINGHAM CLIFFS FORMAT Medium dense orangish brown SAND. Gravel is fine subangular fragments.	medium SAND) ravelly fine to coarse d flint. ION)		Reduced	Depth - 0.00 0.30 - 1.80	SPT 'I 0 10 20	N' Value	Depths 9	ling/In-Sit	4 7 88 88 3 3 4 6	g SPT < N	425 WC	Laborato	ory Testin		Additional Tests and Notes n ² Borehole remained dry and stable upon
and of of casing Water	TOPSOIL (Dark brown fine and i Dense greyish brown slightly gr SAND. Gravel is fine subrounde (SHERINGHAM CLIFFS FORMAT 0.90 Becomes orangish brown Firm orange brown sandy CLAY (SHERINGHAM CLIFFS FORMAT Medium dense orangish brown SAND. Gravel is fine subangular fragments.	medium SAND) ravelly fine to coarse d flint. ION)		Reduced	Depth - 0.00 0.30 - 1.80	SPT 'I 0 10 20	N' Value	Depths 9	5 No.	Blows 47 88 88 88	SPT < N 32	425 WC				n ² Borehole remained dry and stable upon
	Dense greyish brown slightly gr SAND. Gravel is fine subrounde (SHERINGHAM CLIFFS FORMAT 0.90 Becomes orangish brown Firm orange brown sandy CLAY (SHERINGHAM CLIFFS FORMAT Medium dense orangish brown SAND. Gravel is fine subangular fragments.	ravelly fine to coarse ed flint. ION)			0.30				0 1	88 88 33 46	32					Borehole remained dry and stable upon
	SAND. Gravel is fine subrounde (SHERINGHAM CLIFFS FORMAT 0.90 Becomes orangish brown Firm orange brown sandy CLAY (SHERINGHAM CLIFFS FORMAT Medium dense orangish brown SAND. Gravel is fine subangular fragments.	rd flint. ION) 7. ION) 9 gravelly fine to coarse flint and shell			- 1.80		7		0 1	88 88 33 46						completion
					- 4.00			3-		43 43 44 33 33 44	15					Borehole completed at 4.0m
*WATER ¥ Standing water lev ¥ Water strikes	level PIEZOMETER Upper s Respons Lower s	se zone AND E eal TEST L KEY P	B Bulk di U Undist P Piston	listurbed s turbed san	ample nple	S Standard pe C Cone penetr K Permeability	ation test	(35) Ur SPT N N = SP N*120	disturbed N value	d sample (blows a lows/per	e blow cou	int	GI	Geos	1 Brigh	invironmental itwell Barns

	: IVI SC	σττ Ρ	ropei	rties Ltd		PROJ	ECT: La	nd off Fi	Covert	Road	amala				GRO	DUND	LEVE	_ m						HOLE No. WS10	
				CHECKED BY: SG		EXCAV	ATION ME		Windo		•				Gric	d Refe	rence							SHEET 1 OF 1	
	RK BY: DI E REF: GI		BH BF	DATE:					Uncase	a to 4.	υm				DAT	ES 12,	/02/2	019 -	12/0	2/20)19			PROJECT NO. 3921,G	
ite/Time	Depth	Dep							Strat	a	G	phical Representation		Samplii		tu Testin	-	<u> </u>			ory Tes	ting		Additional Tests and Notes	
and Depth	of Casing	0 Wa	- E	Descri	otion of	Strata		Leg	Reduced	Dept	:h	SPT 'N' Value 20 30 40	D	epths 🛓	No.	Blows	SPT N	<425 %	WC %	PL %	LL % №	r 1g/m³	Cu kN/m²		
-	-			TOPSOIL (Dark brown sli SAND. Gravel is fine and	ghtly gr mediur	avelly fin n subang	ie to coarse gular flint)	2		- 0.00) 		0.1		1									Borehole remained dry and s completion	table upon
-	-			Brownish grey becoming gravelly fine and mediun subangular flint. (SHERINGHAM CLIFFS FC	SAND	. Gravel i	slightly s fine	· · · · · · · · · · · · · · · · · · ·	· · · · ·	0.35	5			1-		33 56 65	22							-	
_	-			2.00 Becomes fine to co 2.60 Becomes fine and n					· · · ·	-				2 -		35 54 56	20							-	
_	_								· · · · ·	_			· · · · · · · · · · · · · · · · · · ·	3 -		4 4 4 4 4 5	17							-	
_	_									- 4.00				4 -		2 2 2 2 3 4	11							Borehole completed at 4.0m	
WATER	¥ Star ⊻ Wat	iding v	vater le kes	TT. F	pper se espons ower se	e zone	SAMPLE AND TEST KEY	B Bulk U Undi P Pisto J Distu		sample mple	C Co K Pe	dard penetration test e penetration test neability test	Blow	s SPT blov (35) Unc N N = SPT N*120 = includin; Sample 0	listurbe N value Total b g seating	d sample (blows a lows/pei g	e blow c fter sea netràtio	ount ting) n		GEO	Uni	osphe t 11 E wich	ere En Brightv	vironmental vell Barns	1 OF 1 HOLE No. WS10

	CLIENT	: M So	cott P	rope	erti	es Ltd	PROJECT: Land o	off Fir	Covert	Road			GRC	DUND	LEVEL	m						HOLE No. WS11
There are in a construct Dates 12/02/2019 PROJECT NO. 3922.61 Segment date Bescription of stora 14 Interview Segment dates Maintoin Testing Maintoin Te			דיווסס				EXCAVATION METHOD):			•		Grid	l Refer	ence:							SHEET 1 OF 1
Mark Mark Work Barreloa Ing Mark	-			BH BI	ETA				uncased	ιο 3.0			DAT	ES 12/	/02/20	019 -	12/0)2/2(019			
Image: Part Letter for back and find add in production for back and define the surf and table upon the find and table upon the find add table upon table upon the find add table upon tab	and	of	of	1.5	PIez.	Description of	f Strata	Leg	Reduced		SPT 'N' Value					<425 %	wc	PL	LL	r	Cu kN/m²	
(SHENCHANCLIFFS TORMATION) (1) <	-	-						0.				0 -										
	-	-				(SHERINGHAM CLIFFS FORMATI	ION)	0 0		-		60- ES 70 I	1	44	15							-
		_						• • •				2 -		46	22							-
		-								- 3.00		3 -		9 10	41							Borehole completed at 3.0m
		-										4 -										_
*WATER *WATER *WATER *WATER *WATER *WATER *Water strikes *Water strikes *Water strikes *Water strikes * Water strikes * Piston sample * Piston sample * Piston sample * Piston sample * Piston sample * Piston sample * * * * * * * * * * * * * * * * * * *		-										5 -										
J Disturbed jar sample ES Environmental soil sample DEPTH All depths, level and thicknesses in metres W Water Sample		¥ Sta ⊻ Wa	anding v ater stri	vater kes	level	I PIEZOMETER	se zone AND B eal TEST U KEY P J	Bulk o Undis Pistor Distu	disturbed sa sturbed sam n sample rbed jar san	ample aple aple	C Cone penetration test K Permeability test SPT	(35) Undi N N = SPT N N*120 = including	isturbeo Value Total bl seating	d sample (blows af ows/pen g	blow co fter seat netration	ount ting) n			Un	it 11 E	ere En Bright	vironmental well Barns

GEL AGS BH BETA 3921,GI FIR COVERT ROAD, 21-05-19. GPJ GINT STD AGS 3_1. GDT 10/6/19

CLILINI	: IVI 500	DTT Pr	operi	ies Ltd	PROJECT: Land				malar	GROUN		Lm						HOLE No. WS12
LOGGED				CHECKED BY: SG	EXCAVATION METHO):	Window		•	Grid Ref	<u>erenc</u> e	:						SHEET 1 OF 1
FIELDWOI TEMPLATI			3H BFT4	DATE:		ι	Uncased	to 4.0	y m	DATES 1	2/02/2	019 -	12/	02/2	2019			PROJECT NO. 3921,GI
	Depth	Depth					Strata		Graphical Representation Samplin	g/In-Situ Tes						esting		Additional Tests and Notes
and	of Casing	of Wate	Ë.	Description o	f Strata	Leg	Reduced Level	Depth	SPT 'N' Value Depths 문	No. Blow	/s SPT	<425 %	wc %	PL %	LL %	r Mg/m³	Cu kN/m²	
-	-			TOPSOIL (Dark brown gravelly Gravel is fine and medium suba				- 0.00		1								Borehole remained dry and stable upon completion
-	-			Medium dense orangish brown and GRAVEL. Gravel is fine and flint and shell fragments. (SHERINGHAM CLIFFS FORMAT	fine to coarse SAND medium subangular ION)	0 • 0 • 0		0.70	<pre></pre>	34	13							-
				Medium dense orangish brown SAND. (SHERINGHAM CLIFFS FORMAT				1.20	1.50- 1.60	2								
-	-			2.10 Becomes light brown.				-	2-	3 3 4 5 5 5								-
-	-							-	3	4 4 4 5 6 6								-
-	-					• • • • • • • •	-	- 4.00	4	4 4 4 6 6 7								Borehole completed at 4.0m
-	-							-	5 -									-
	¥ Star ⊻ Wat			el PIEZOMETER DUpper s Respon	se zone AND E eal TEST L KEY P J	Bulk d Undis Piston Distur	1 disturbed sa turbed sam sample bed jar san onmental so	ample ple nple	K Permeability test SPT N N = SPT N N*120 = including	sturbed sam I value (blows Total blows/p seating	ole blow c s after sea penetràtic	count ating) on		GIC	ΙŰ	eosphe nit 11 I swich	ere En Brightv	vironmental well Barns

LIENT	: M Sc	ott P	roper	ties Ltd	PROJECT: Land off	Fir	Covert	Road			GRO	UND	LEVEL	. m						HOLE No. WS13
OGGED E				CHECKED BY: SG	EXCAVATION METHOD:		Window		•		Grid	Refer	ence:							SHEET 1 OF 1
IELDWOI EMPLATI				DATE:		ι	Jncased	1 to 4.0) m			ES 12/			12/0	2/20	019			PROJECT NO. 3921,GI
te/Time	Depth	Dep			·		Strata		Graphical Representation	Samplir	ng/In-Situ						ory Te	sting		Additional Tests and Notes
and Depth	of Casing	0 Wa	. ie	Description	of Strata	Leg	Reduced	Depth	SPT 'N' Value	Depths 卢	No.	Blows	SPT		wc	PL %	LL	r ∕Ig/m³	Cu ,	2
-	-						Level	0.00	0 10 20 30 40	0 -		5.0115	N	%	%	%	% 1	vig/m	kN/m ²	
				TOPSOIL (Dark brown fine to c	oarse SAND)			0.00												Borehole remained dry and stable upon completion
										-										
				Medium dense orangish brow coarse SAND. Gravel is fine an	n slightly gravelly fine to	ο.		0.45		1										
				flint.	•				· · · · · · · · · · · · · · · · · · ·											
				(SHERINGHAM CLIFFS FORMA	TION)	ο.														
+	-				•	•••		-	•••••••••••••••••••••••••••••	1 -		45	23							-
					•	· · ·				1		66 56	20							
					•	•••						50								
						•••			<u> </u>											
					•	•••														
						•••			. <i> </i>											
+	-				•	÷.,		-	<u> </u>	2 -		43	14							-
						· · ·				-		33 44								
					•	÷.,														
				Medium dense orangish brow and GRAVEL. Gravel is fine sub	n fine to coarse SAND	5		2.50	· · · · · · · · · · · · · · · · · · ·											
				(SHERINGHAM CLIFFS FORMA		, р. Б. С.														
					·	· Þ.			· · · · · · · · · · · · · · · · · · ·											
T	-			Medium dense light brown fin		· · ·		3.10		3 -		44 44	18							-
				(SHERINGHAM CLIFFS FORMA	TION)	••••						55								
						••••			· · · · · · · · · · · · · · · · · · ·											
					•	· · · .			· · · · · · · · · · · · · · · · · · ·	-										
						••••			\											
4	_					•••		4.00	·····	4 -										-
								4.00				55 57	28							Borehole completed at 4.0m
										-		79								
									· · · · · · · · · · · · · · · · · · ·											
+	-							-		5 -										-
									· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	1										
		<u> </u>																		
NATER	¥ Star ⊈ Wat	nding v ter stri	vater lev kes		se zone AND B B	Bulk d	listurbed sa	ample	S Standard penetration test E C Cone penetration test	(35) Und	listurbed	sample	blow co	ount	010379	Ģ	~	a a ce le		vvironmental well Barns
				Lower			turbed san sample	nple	K Permeability test	PT N N = SPT N*120 =	N value (t Total blo	blows af ows/pen	fter sea netràtio	ting) n		ill	Ge	it 11 l	ere En Briahtv	well Barns
					JD	Distur	bed jar sar			including	g seating				103 MENTA	0		wich		<u> </u>
				DEPTH All depths, level and			onmental se Sample	uii sample	- *	425 Sample S	∞ passing	3 425 MI		eve			•			

CLIENT: M S	Scot	t Prope	erti	es Ltd	PROJECT: Land								GRO	UND	LEVEL	. m					HOLE No. WS14
OGGED BY: CS				CHECKED BY: SG	EXCAVATION METHO	<i>J</i> D.	Window		-	er			Grid	Refer	ence:						SHEET 1 OF 1
ELDWORK BY: EMPLATE REF:			ΕΤΑ	DATE:			Uncased	1 TO 3.	υm			Γ	DAT	ES 12/	/02/20)19 -	12/0	2/201	.9		PROJECT NO. 3921,GI
te/Time Dept				1	1		Strata	ı	G	Graphical Representation	Sa			u Testin					/ Testing	_	Additional Tests and Notes
and of Depth Casin		of Water	107.	Description o	f Strata	Leg	Reduced Level	Dept	h	SPT 'N' Value	Depths	Type	No.	Blows	SPT N	<425 %	WC %	PL L % %	L r 6 Mg/m	³ KN/m ²	
Jepth Casin	ng	Water	-	TOPSOIL (Dark brown slightly g Medium dense becoming loose gravelly fine to coarse SAND. G medium subangular flint. (SHERINGHAM CLIFFS FORMAT	orangish brown	· • • • • • • • • • • • • • • • • • • •		- 3.00			Depths 0 0.10- 0.20 1 1 2 3 3 4			Blows 3 3 3 3 3 6 6 2 3 2 3 2 3 3 2 2 2	N 18 10 9		%	% 9	6 Mg/m	³ kN/m ²	Borehole remained dry and stable upon completion Borehole completed at 3.0m
WATER ¥ Si ¥ W	Standi Water	ng water strikes	level	PIEZOMETER Upper s	eal TEST KEY	B Bulk o U Undis P Pistor	listurbed s turbed san	ample nple	C Co	tandard penetration test	(35 PTNN= N:) Undis SPT N	sturbed value (otal blo	l sample blows at ows/per	blow co	ount ting)	GIGSIMERE ENVIRONM		Geospl Unit 11 Ipswich	Bright	vironmental vell Barns

			rope	lues		PROJECT: Land		Covert	Road	malar		GRO		EVEL.	m						HOLE No. WS15
OGGED					CHECKED BY: SG	EXCAVATION METHO	D:	Window		•		Grid I	<u>Refe</u> re	ence:							SHEET 1 OF 1
	RK BY: DI E REF: GI		S BH BF	ТА	DATE:			Uncased	1 to 4.(υm		DATE				12/0	2/20)19			PROJECT NO. 3921,GI
te/Time	Depth	Dep				1		Strata	1	Graphical Representation	Samplir	ig/In-Situ						ry Test	ing		Additional Tests and Notes
and Depth	of Casing	o Wa	fl∺≝		Description o	f Strata	Leg	Reduced Level	Depth	h SPT 'N' Value	Depths 🖧	No.	Blows	SPT N	<425 %	wc %	PL %		r g/m³	Cu kN/m²	
-	_			TC SA	PSOIL (Dark brown slightly gi ND)	avelly fine and medium			- 0.00		0 - 0.10- 0.20	1									Borehole remained dry and stable upon completion
				to	edium dense becoming dense coarse SAND and GRAVEL. G edium subangular flint. HERINGHAM CLIFFS FORMAT	ravel is fine and	р р. р.	•	0.50												
_	_			1.0	00 Becomes fine subangular f	lint.	0.0.0.0.0 0.0.0.0		-		1 - - - - - - - - - - - - - - - - - - -	2	48 55 67	23							-
_	-						0.0.0.0.0 0.0.0.0		_		2-		35 55 66	22							_
-	-			3.2	20 Becomes light brown.				-		3 -		54 55 56	21							-
-	-						b 		- 4.00		4 -		54 711 1012	40							Borehole completed at 4.0m
WATER	¥ Star ⊻ Wat	iding er str	water le kes	vel f	PIEZOMETER Dupper s Respons Lower s	se zone AND E eal TEST L KEY F	B Bulk o J Undis P Pistor	disturbed disturbed s sturbed sample n sample rbed jar sa	ample nple	S Standard penetration test C Cone penetration test K Permeability test SI		isturbed s N value (b Total blov	sample olows af	blow co ter seat	ount ing)	IL DAVISO	GEO	Geo Unit Ipsw	11 E	ere En Brightv	vironmental well Barns

CLIENT	: M Sc	ott P	roper	ties Ltd		PROJ	ECT: Land	d off Fir	Covert	Road		lor		G	ROUND	LEVE	Lm					HOLE No. WS16	
OGGED E				CHECKED BY: SG		EXCAVA	ATION METH	00.	Window		-			Gr	id Refe	rence	:					SHEET 1 OF 1	
ELDWO			BH BF1	DATE:					Uncased	1 TO 4.(Jm			DA	TES 12	/02/2	019 -	12/0	2/20	19		PROJECT NO. 3921,G	il
		Dep							Strata	i	6	Graphical Representation	San		Situ Testir					y Testin	g	Additional Tests and Notes	
and Depth	Depth of Casing	0 Wa	. ie	Dese	cription of	f Strata		Leg	Reduced Level	Depth	n o	SPT 'N' Value	Depths	Type No	. Blows	SPT N	<425 %	WC %	PL %	_L r % Mg/i	m³ kN/m	2	
-	-			TOPSOIL (Dark brown SAND) Medium dense becom gravelly fine to coarse flint. (SHERINGHAM CLIFFS	ing loose SAND. Gr	orangish avel is fin		tly 0		- 0.00					45 77 67 32 22 32	27						Borehole remained dry and completion	stable upon
-	_							0	c c	_			3 -		12 12 12	6							
-	-							•••••		- 4.00			4 - - - - - - - - - - - - - - - - - - -		21 11 12	5						Borehole completed at 4.0n	ı
WATER	¥ Star ⊻ Wat	nding v er stri	vater le kes	vel PIEZOMETER	Upper se Respons Lower se	e zone eal	SAMPLE AND TEST KEY	B Bulk o U Undis P Pistor J Distur ES Enviro	listurbed s turbed sar sample bed jar sa onmental s	ample nple mple	C Co K Pe		(35) PTNN=S N*12	Undisturk PT N valu 0 = Total ding seat	ed sample e (blows a blows/pe ng	e blow c after sea netràtio	ount iting) in	OF OT OTHER AND IN OTHER AND A		Geosp Unit 1 Ipswic	1 Bright	nvironmental well Barns	SHEET 1 OF 1 HOLE No. WS16

CLIEN	T: N	M Sco	ott Pro	pert	ies Ltd	PROJECT: Land o	off Fir	Covert	Road						GRO	UND	LEVEI	Lm						HOLE No. WS17
LOGGED FIELDWO					CHECKED BY: SG DATE:	EXCAVATION METHOD):	Window Uncased		•	ſ				Grid	Refer	ence:							SHEET 1 OF 1
TEMPLA				H BET/				Uncased	10 4.0						DAT	ES 12/	/02/20	019 -	- 12/	02/2	019			PROJECT NO. 3921,GI
Date/Time and Depth		oepth of asing	Depth' of Water	ie l	Description	of Strata	Leg	Strata Reduced Level	Depth		SP	I Representation	Sa Depths	e	ng/In-Siti No.	u Testin Blows	g SPT N	<425 %	Li 5 WC %	eborat PL %	LL	esting r Mg/m³	Cu kN/m ²	Additional Tests and Notes
	-				TOPSOIL (Dark brown fine an Medium dense orangish brov coarse SAND. Gravel is fine st flint. (SHERINGHAM CLIFFS FORM) Medium dense becoming de coarse SAND. (SHERINGHAM CLIFFS FORM)	vn slightly gravelly fine to Ibangular to subrounded ATION)			- 0.00 0.50 - 2.40 - 4.00							34 55 67 44 55 45 34 44 45 79 810 1010	23 19 17 38							Borehole remained dry and stable upon completion Borehole completed at 4.0m
WATEF			ding wa ter strike		el PIEZOMETER Uppe Respondent Lowe	nse zone AND B • seal TEST U KEY P J E	Bulk o Undis Pistor Distur S Enviro	disturbed sa sturbed sam n sample rbed jar san onmental so	ample aple aple	C Con K Peri	e pen	penetration test etration test lity test	(35 SPT N N = N) Und SPT I 120 = luding	isturbed N value (Total blo g seating	l sample blows a ows/per	blow contractions for the sea of	ount ting) n		GIO	Ur	eosphe nit 11 I swich	ere En Brightv	vironmental vell Barns

GEL AGS BH BETA 3921,GI FIR COVERT ROAD, 21-05-19,GPJ GINT STD AGS 3_1,GDT 10/6/19

CLIENT	: M So	ott	Prope	rtie	es Ltd	PROJECT: Land	off Fir	Covert	Road					GRO	UND	LEVEL	. m					HOLE No. WS18	
LOGGED					CHECKED BY: SG	EXCAVATION METHO	<i>.</i> .	Window		-				Grid	Refer	ence:						SHEET 1 OF 1	
ELDWO				TA	DATE:		I	Uncased	1 to 3.0	Jm			Γ	DATI	ES 12/	02/20)19 -	12/07	2/201	9		PROJECT NO. 3921,0	
te/Time	Depth							Strata	1	Graphica	l Representation	Sa			u Testing	-		-		Testing		Additional Tests and Notes	
and Depth	of Casing		pth* of ater	-	Description o	f Strata	Leg	Reduced Level	Dept	'	T 'N' Value	Depths	Type	No.	Blows	SPT N	<425 %	WC I	PL LI % %	r Mg/m	³ Cu kN/m ²		
-	- -) (TOPSOIL (Dark brown fine and Medium dense orangish brown SAND. SHERINGHAM CLIFFS FORMAT Medium dense light brown fine SHERINGHAM CLIFFS FORMAT	fine and medium ION)			- 0.00 0.45 - 2.30 - 3.00			0 0.20- 0.30 1 2 3 3 4			34 67 89 55 67 33 54 56	N 30 24 20						Borehole remained dry and completion Borehole completed at 3.0r -	
WATER	¥ Sta ⊻ Wa	nding ater si	water I rikes	evel	PIEZOMETER Upper s Respon Lower s	se zone AND I eal TEST I KEY I	B Bulk c U Undis P Pistor	disturbed s listurbed s turbed san sample bed jar sar	ample nple	S Standard C Cone pene K Permeabil		(35 SPTNN= N*:	Undis SPT N 20 = T	sturbed value (sample blows af ows/pen	blow co fter seat	ount ting)	E ENVIRO		Geosph Unit 11 Ipswich	Bright	vironmental vell Barns	SHEET 1 OF 1 HOLE No. WS18
					DEPTH All depths, level and	I	ES Enviro	onmental s		e		<425 San				cron sie	eve	INTAL	0	Pawieli			, ,

CLIENT	Г: M S	Scot	t Prop	perti	ies Ltd	PROJECT: Land	off Fir	Covert	Road			GRO	UND	LEVEL	m				HOLE No. WS19
LOGGED					CHECKED BY: SG DATE:	EXCAVATION METHO	D:	Window		•		Grid	Refer	ence:					SHEET 1 OF 1
FIELDWC TEMPLAT				BETA				Uncased						02/20	19 - 1				PROJECT NO. 3921,GI
Date/Time and Depth	Dept of Casin		Depth* of Water	Piez.	Description o	f Strata	Leg	Strata Reduced Level		Graphical Representation SPT 'N' Value 0 10 20 30 40	Samplin Depths 같	ng/In-Situ No.	u Testing Blows		<425 %	L LL	Testing r Mg/m	Cu n ³ kN/m	Additional Tests and Notes
-	+				TOPSOIL (Dark brown fine and Medium dense orangish brown				0.00		0 -								Borehole remained dry and stable upon completion
-	-				Medium dense orangish brown SAND. (SHERINGHAM CLIFFS FORMAT Medium dense light brown fine (SHERINGHAM CLIFFS FORMAT	ION)			- 2.20	P	1-		45 65 65 33 26 45	22					
-	-								- 3.00		3-		25 44 44	16					Borehole completed at 3.0m
*WATER	₹ ¥ S ¥ V	Standi Water	ng wate strikes	er leve	el PIEZOMETER TRespons Lowers	se zone AND B	3 Bulko	- disturbed sa turbed san	ample	S Standard penetration test E C Cone penetration test S K Permeability test S	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	isturbed	sample	blow co	unt	G 0	Geosp	here Er	nvironmental
*WATER					DEPTH All depths, level and	KEY P J E	Pistor Distur S Enviro	n sample rbed jar sar onmental s	nple	·	PTN N = SPTP N*120 = including 425 Sample 9	Total blo g seating	ows/pen	etràtion			Unit 11	1 Bright	well Barns

CLIENT:	M Sco	ott F	rope	rties	s Ltd	PROJECT: Land o	off Fir	Covert	Road					GRO	DUND	LEVEL	. m						HOLE No. WS201		
OGGED B					CHECKED BY: SG	EXCAVATION METHOD):	Window		•				Gric	d Refer	ence:							SHEET 1 OF 1		
IELDWOF EMPLATE				ТА	DATE: 24/05/2019		ι	Uncased	to 6.0) m					ES 15/			15/0)5/20	019			PROJECT NO. 3921,0	5I	
	Depth	Dep						Strata	I	Graph	ical Representation		Samplin		tu Testin					ory Te	sting		Additional Tests and Notes		
and	of Casing	o Wa	fl∺ĕ		Description of	f Strata	Leg	Reduced Level	Depth		SPT 'N' Value 20 30 40	Dept	hs Lype	No.	Blows	SPT N	<425 %	wc %	PL %	LL % I	r Mg/m³	Cu kN/m²			
-			-	TC wi	DPSOIL (Dark brownish grey o ith frequent fine roots and rar	rganic silty fine SAND re coarse roots)	-		0.00			0.15	0-	1									Borehole remained dry and completion	stable upon	
				Da (S	ark reddish brown silty fine SA HERINGHAM CLIFFS FORMATI	AND ION)	×	>	0.25			0.35	1	2											
							×	>																	
+					90 Becoming dark orangish br epth	own mottled with		>	-		•	0.90	1 - D	1	35	23							_		
							×	>							56 66										
							•••••	>				1.50	D	2											
+							×	*	-				2		33	19							-		
							×	}							4 4 5 6										
				2. ye	50 With occasional rounded g ellowish brown fine to coarse s	ravel of flint and pale sand	×	>				2.50	D	3											
							×	>	_			3	3 -										-		
							× .	>			· · · · · · · · · · · · · · · · · · ·				58 1114 178	63*									
				SA	40 Becoming a slightly saturat AND with rare cobbles of flint a Jartzite	ed medium to coarse and fine gravel of	×	>				3.50	D	4											
				40			×	>															_		
							••••• •ו••	×							56 68 1011	35									
							×	>			· · · · · · · · · · · · · · · · · · ·			-											
							:× : .	}				4.60	- D	5											
+							×	>	-				5 -		67 79 911	36							F		
				_		anth	×	>																	
				5.	55 Becoming pale grey with do	epui	× .	>				5.70	D	6											
+							~ ·	-	- 6.00				6 -		88 810 1211	41							Borehole completed at 6.0r	n	
VATER	¥ Stan ⊻ Wate	ding er str	water le kes	evel	PIEZOMETER Respons Lower se	se zone AND B eal TEST U	Bulk d Undis	disturbed listurbed s turbed sar sample	ample		rd penetration test enetration test ability test	SPTNI	(35) Undi N = SPT N	isturbe Value	ach 75mr d sample (blows a lows/per	blow co fter sea	ount ting)		G	Ge	eosphe	ere En Briahtv	vironmental vell Barns	SHEET 1 OF 1 HOLE No. WS201	
					DEPTH All depths, level and t	J	Distur S Enviro	bed jar sa onmental s		e		i	ncluding	seating					0		swich	5		- <u>- </u> 201	

	: M Sc		Toper	LIES L		PROJECT: Land o	<u>TIFIR</u>	Covert	Road				GRU	DUND	LEVEL	. m						HOLE No. WS202	
OGGED I					CHECKED BY: SG	EXCAVATION METHOD):	Window		•			Gric	l Refer	ence:							SHEET 1 OF 1	
IELDWO IEMPLAT			S RH RF		DATE: 24/05/2019		I	Uncased	d to 6.0	m				ES 15/			15/0)5/2	019			PROJECT NO. 3921,GI	
te/Time	Depth	Dep						Strata	1	Graphical Represe	ntation	Samp	ling/In-Si					borat		sting		Additional Tests and Notes	
and Depth	of Casing	o Wa	f∣ä≝		Description of	f Strata	Leg	Reduced Level	Depth	SPT 'N' Value	40	Depths	No.	Blows	SPT N	<425 %	wc %	PL %	LL %	r Mg/m³	Cu kN/m²		
_	-			orga rare	SOIL (Dark brownish grey sl nic silty fine SAND with free coarse roots)	quent fine roots and	-		0.00			.10	1									Borehole remained dry and stat completion	ole upon
				Dark (SHE	orangish brown fine SAND RINGHAM CLIFFS FORMAT	ION)			0.35	· · · · · · · · · · · · · · · · · · ·		.40	2										
-	-			1.10	Becoming yellowish brown	mottled with depth			-	Ţ	0 	.90 ₁ <u>-</u> [) 1	4 4 6 6 6 6	24							-	
-	-			2.10 yello rinde	Becoming medium to coar wish brown mottling and ra d flint with depth	se SAND with pale are gravel of angular			_		·····	.85 2 C		3 3 3 5 4 6	18							-	
-	-			3.10	Becoming slightly saturated	1			-			3		45 46 65	21							-	
_	-			4.50	Becoming pale yellow brov	vn with depth			-		4	.60 C		33 43 43	14							-	
-	-			5.40	- 5.60 Black with iron ceme	nted siltstone gravel			_		· · · · · · · · · · · · · · · · · · ·	.45	0 6	32 23 23	10							_	
-	-						· · · · · · · · · · · · · · · · · · ·		- 6.00			6 -		33 23 34	12							Borehole completed at 6.0m	
WATER	¥ Star ⊻ Wat	ding er str	water le ikes	vel PIE	ZOMETER Upper s Respons Lower s	se zone AND B eal TEST U KEY P J	Bulk o Undis Pistor Distur	disturbed s listurbed s turbed sam sample bed jar sam onmental s	ample nple mple	 S Standard penetration C Cone penetration to K Permeability test 	est SPT	(35) Ur N N = SP N*120	ndisturbe F N value = Total b ng seating	d sample (blows at lows/per g	blow co fter seat ietràtion	ount ting) า		G II O	Ur	eosphe hit 11 E swich	ere En Brightv	vironmental vell Barns	SHEET 1 OF 1 HOLE No.

CLIENT	: M So	cott	Proper	ties Ltd	PROJECT: Land o	off Fi	Covert	Road					GRC	DUND	LEVE	Lm						HOLE No. WS203a		
LOGGED				CHECKED BY: SG	EXCAVATION METHOD		Window			n 0.0 to 3.0m			<u>Grid</u>	Refer	<u>ence</u> :							SHEET 1 OF 1		
FIELDWO TEMPI AT			GS BH BET	DATE: 24/05/2019			115mm	cased	Tror	m 0.0 to 3.0m				ES 22/			- 22/	05/2	019			PROJECT NO. 3921,0	il	
ate/Time	Depth			·· .	I		Strata	1		Graphical Representation	Sai			u Testin					ory Tes	sting		Additional Tests and Notes		
and Depth	of Casing		epth* i of ia Vater	Description	of Strata	Leg	Reduced	Dept	h	SPT 'N' Value	Depths	Type	No.	Blows	SPT N	<425 %	wc %	PL %	LL % N	r 4a/m ³	Cu	2		
	-				1		Level	0.00		10 20 30 40	0 -				N N	70	70	70	% N	vig/111	kN/m ²	-		
				TOPSOIL (Dark brownish grey organic silty fine SAND with free	quent fine roots and			0.00	, i i			-												
				rare coarse roots) Dark yellowish brown silty fine	SAND with rare fine	·× ·	_	0.40	, ··			1												
				roots (SHERINGHAM CLIFFS FORMA		ŀ			- 			-												
						:×:	•					-												
-	-					·×. ·	•	F		•	0.85- 1.00 1 -	P	1	22	11							-		
							•					-		32										
						÷.]												
				1.50 Slightly saturated with oc depth	asional speckling with	× :	·]												
						·×·					1.85-	D	2											
-	-			2.00 Becoming saturated and s	lightly clayey with depth	:•:	•	-	<u> </u>	··· • · · · · · · · · · · · · · · · ·	2.00 2 -		Z	22	12							-		
						···	•					1		2 2 4 4										
						:×:	•					1												
		<u>¥</u>	2.70			. <u>.</u> .	:					-												
				2.70 Becoming very saturated	with depth	•••					2.85-	D	3									Seepage inflow of water at 2	2.7m	
-	-					×.	•	-		•••••••••••••••••••••••••••••••••••••••	3.00 3 -	1		11	9							-		
						×	•		 			1		21 15										
				Dark yellowish brown CLAY		· ·	-	3.50	יי⊦¦ (1												
				(SHERINGHAM CLIFFS FORMA		×.	·	3.60				-										Partial collapse to 3.62m up	on comp	letion.
				Dark yellowish brown silty fine roots		· <u>×</u> ·				·········	3.75-	D	4									Further collapse to 3.2m up	on remo	val of c
-	-			(SHERINGHAM CLIFFS FORMA 3.60 Becoming a medium SAN		•••				······	4 -	-		45 54	18									
				sand and rare gravel of coarse	rinded flint	×	•]		45										
				4.50 Becoming light yellowish	prown and gravel no	·×. •	•]		44	25									
				longer present with depth		·]		56										
						••••		- 4.95			5 -	-												
												1										 Borehole completed at 4.95 	m	
												1												
									<u> </u>			1												
_	_							_			6 -	1										-		
									 		-	1												
*WATER	¥ Sta	andir	e water lev	vel PIEZOMETER 🛄 Upper	seal SAMPLE D	Smal		l sample	<u> </u>	Standard penetration test	lows SPT	blows	for ea	 ch 75mr	l m increr	l ment	L							
	¥ Wa	ater	strikes	Respor	se zone AND B	Bulk	disturbed s sturbed san	ample	С	Cone nenetration test		Indis	turher	1 samnle	hlow c	ount		G		osphe	ere En	vironmental	HOLE No. WS203a	Sheet 1 of 1
				ZZZ LOWER	KEY P	Pisto	n sample		ĸ		N*1	.20 = T	otal bl	ows/per	netràtio	n			Uni	it 11 I	Bright	well Barns	.E N	<u>רי</u> ק
					ES	5 Envir	irbed jar sai onmental s		ole		inclı 425 Sam		seating passin		icron sie	eve		0	Ips	wich			a <u>e</u>	
				DEPTH All depths, level and	thicknesses in metres W	/ Wate	er Sample												•					

-	. IVI SCO		rope	rties L	τα	PROJECT: Land c	off Fir	Covert	Road				GRC	UND	LEVEL	. m						HOLE No. WS204a	
LOGGED E					HECKED BY: SG	EXCAVATION METHOD		Window					Grid	Refer	ence:							SHEET 1 OF 1	
ELDWO			BH BF		DATE: 24/05/2019		-	TT2WW	cased f	from 0.0 to 4.0m		ſ		ES 22/			22/0)5/20	019			PROJECT NO. 3921,0	il
ate/Time	Depth	Dep		1 .				Strata	3	Graphical Representation		ا Samplin				,			ory Te	sting		Additional Tests and Notes	
and Depth	of Casing	Wa	fl∺ĕ		Description o	f Strata	Leg	Reduced Level	Depth	h SPT 'N' Value	Depth	Type Is	No.	Blows	SPT N	<425 %	wc %	PL %	LL % I	r Mg/m³	Cu kN/m²		
-	-			organ rare	OIL (Dark brownish grey s nic silty fine SAND with fre coarse roots)	quent fine roots and			0.00			0										Borehole remained dry and completion	stable upon
				coars	wish brown silty fine SANE se rinded flint RINGHAM CLIFFS FORMAT		×	· · ·	0.35		0.85-		1										
-	-			Dark (SHEI	orangish brown slightly sa RINGHAM CLIFFS FORMAT	ndy CLAY. Sand is fine ION)	× · ·	•	1.05		1.00	1-	1	11 34 44	15							-	
				(SHEI	orangish brown slightly cla RINGHAM CLIFFS FORMAT	ION)		•	1.65 1.85	·	1.85-		2										
-	-			deca (SHFI	greyish brown closely fissu yed fine roots and rare ora RINGHAM CLIFFS FORMAT - 2.20 With a pocket of silt	nge brown streaks			-		2.00	2 -		4 4 5 4 4 4	17							-	
-	-			and r rare (SHEI 2.85 3.00	greyish brown/dark orang medium SAND with occasic gravel of rounded chalk ar RINGHAM CLIFFS FORMAT Becoming dark orange brc Mottling no longer presen Gravel no longer present	onal coarse sand and d flint ION) wn laminated at base			_ 2.85		2.85- 3.00	3 - D 	3	46 45 55	19							-	
-	-				Becoming dark yellowish b Rare shell fragments prese			•	-		3.85- 4.00	4 – D	4	4 5 5 6 7 7	25							-	
-	-			5.00	Occasional black speckling Rare gravel of coarse angu Iz present with depth			•	-	+	4.85- 5.00	5 - D	5	46 56 78	26							-	
-	-						• • •	• • •	6.05			6 -		4 4 6 7 6 8	27							_ Borehole completed at 6.05	m
WATER	¥ Stan ⊻ Wat			vel PIE	ZOMETER Upper s	se zone AND B eal TEST U KEY P	Bulk o Undis Pistor	disturbed disturbed s sturbed sar n sample rbed jar sa	ample nple	S Standard penetration test C Cone penetration test	(3 SPTNN N	35) Undis	sturbec value (otal bl	l sample blows at ows/per	blow co fter seat	ount ting)		G I O	Un	eospho hit 11	ere En Brightv	vironmental well Barns	SHEET 1 OF 1 HOLE No. WS204a

.OGGED IELDWO					es Ltd	PROJECT: Land of							ROU	IND L	EVEL	m					HOLE No. WS205a	
IELDWO					CHECKED BY: SG DATE: 24/05/2019	EXCAVATION METHOD:		Window		mpier rom 0.0 to 3.0m		0	irid R	Refere	nce:						SHEET 1 OF 1	
EMPLAT				BETA			-		Laseu i	011 0.0 to 5.011			ATES	5 22/0)5/20	19 -	22/0	5/20)19		PROJECT NO. 3921,G	I
te/Time and Depth	Dep of Casi	f	Depth* of Water	Piez.	Description o	f Strata	Leg	Strata Reduced Level	Depth	Graphical Representation SPT 'N' Value 0 10 20 30 40	Sa Depths	npling/I			SPT N	<425 %		PL %	LL % M	ting r Cu 1g/m ³ kN/m ³	Additional Tests and Notes	
-	-				TOPSOIL (Dark brownish grey s organic silty fine SAND with fre rare coarse roots)	lightly desiccated quent fine roots and			0.00		0 -										-	
					Dark yellowish brown silty fine (SHERINGHAM CLIFFS FORMAT	SAND TON)	× .	>	0.40	· · · · · · · · · · · · · · · · · · ·	•											
_					0.70 Becoming light yellowish b of coarse angular rinded flint		× .	>			0.85-	D	1									
					1.00 Becoming dark yellowish b brown mottled with depth	brown/light yellowish	×	>			1.00 1	- - - -		11 22 23	9							
_	-				2.00 Becoming saturated with o	depth	× . × .	2	-		1.85- 2.00 2 -	D		2 2 3 4 4 6	17						_	
		_¥	2.50		2.45 Becoming dark orange/rec		×		2.05												Partial collapse to 2.4m upor Seepage inflow of water at 2	completion .5m
-	-				Dark orangish brown CLAY with black specklings (SHERINGHAM CLIFFS FORMAT 2.85 - 2.95 With a parting of da with pale grey partings and blac	TION) rk orangish brown clay		*	2.85 - 2.95	•	2.85- 3.00 3 -	D		4 4 4 5 5 4	18						_	
	-	_¥	3.85		Dark yellow brown silty fine SA clay parting and dark orangish I sand (SHERINGHAM CLIFFS FORMAT 3.20 Interbedded clay parting 3.30 - 3.35 With a dark orangish sand	brown parting of fine ION)	·× · · ·		_ 3.90 4.05		3.85- 4.00 4 -	D		56 57	28						Seepage inflow of water at 3	.85m
					Dark yellow brown CLAY (SHERINGHAM CLIFFS FORMAT 3.90 Interbedded clay parting Dark yellow brown silty mediur		×	2			- - - -			79								
-					rare shell fragments (SHERINGHAM CLIFFS FORMAT 4.05 Interbedded clay parting. sand with occasional coarse sar fragments with depth 5.20 Rare black speckling prese	Becoming a medium nd and rare shell	×				4.85- 5.00 5 -	D		66 56 67	24						-	
							×	>						56 56 78	26							
-	T						•••		6.05		6 -										Borehole completed at 6.05	n
WATER	⊻	Stand Wate	ing wate r strikes	r leve	I PIEZOMETER Upper s Respon Lower s	se zone AND B real TEST U KEY P J	Bulk c Undis Pistor Distur	disturbed sa listurbed sa turbed sam sample bed jar san onmental so	ample iple iple	·	(35) SPT N N = N*1	Undistu SPT N va 20 = Tot Jding se	rbed sa lue (blo al blow ating	ample b ows afte vs/pene	olow co er seat tràtion	ount ing) N		GEO	Unit	osphere Er t 11 Bright wich	ivironmental well Barns	SHEET 1 OF 1 HOLE No. WS205a

GEL AGS BH BETA 3921, GI FIR COVERT ROAD, 21-05-19. GPJ GINT STD AGS 3_1. GDT 10/6/19

	: 111 20	ott P	roper	ties Ltd	PROJECT: Land o	<u>tt Fir</u>	Covert	Road			GR	OUND	LEVEL	. m						HOLE No. WS206		
OGGED				CHECKED BY: SG	EXCAVATION METHOD		Window		•		Gri	d Refei	rence:							SHEET 1 OF 1		
	RK BY: GI E REF: GI		BH BET	DATE: 24/05/2019		1	112100	cased 1	from 0.0 to 5.0m			TES 22			22/05	5/20	19			PROJECT NO. 3921,0	1	
te/Time	Depth	Dept					Strata	1	Graphical Representation	Sar	npling/In-S						ry Testir	ng		Additional Tests and Notes		
and Depth	of Casing	of Wat	-je	Description o	f Strata	Leg	Reduced Level	Depth		Depths	ad ∠_ No.	Blows	SPT N	<425 %	wc	PL %	LL I % Mg		Cu N/m ²			
	-			TOPSOIL (Dark brownish grey s organic silty fine SAND with fre rare coarse roots)	ightly desiccated quent fine roots and		1	0.00		0 -									-	Borehole remained dry and completion	stable upo	'n
				Yellowish brown silty fine SANE (SHERINGHAM CLIFFS FORMAT	with gravel of fine flint ION)	×	,>	0.40														
_	-			0.75 - 0.85 With a parting of fin 0.85 Becoming dark orangish b brown mottling	e to coarse rinded flint own with rare reddish	× • • •		-	<u> </u>	0.85- 1.00 1 -	D 1	34 56 67	24						-			
						× . × .				1.85-	D 2											
-	-			2.40 With frequent modium on	ad and becoming	× . •				2.00 2 -		33 34 35	15									
				2.40 With frequent medium sau slightly saturated 2.60 With rare coarse sand	ia and becoming	·	>			2.85-	D 3											
				3.10 - 3.45 Becoming a fine to c	oarse sand	~ ·× ·×				3.00 3 -		4 4 6 5 5 6	22									
-	-			3.95 Becoming dark yellow bro	wn	× × ×		_		3.85- 4.00 4 -	D 4	45 54 56	20						-			
_	-			4.90 With rare gravel of coarse 5.00 Becoming dark reddish bro occasional black speckling 5.10 No longer mottled	rinded flint wn mottled with	×		_	• •	4.85- 5.00 5 -	D 5	55 55 67	23						-			
_	-					× · ·	2	- 6.00		5.85- 6.00 6 -	D 6	77 77 89	31						-	Borehole completed at 6.0n	l	
 NATER	¥ Star ⊻ Wat	l nding v ær stri	vater lev kes	vel PIEZOMETER Upper s Respon	eal AND B Eal TEST U KEY P J	Bulk o Undis Pistor Distur	disturbed disturbed s sturbed sar sample rbed jar sar onmental s	ample nple mple		(35) PTNN= N*1	Undisturbe SPT N value 20 = Total I Iding seatir	ed sample e (blows a plows/pei ng	e blow co ofter sea netràtio	ount ting) n	E ENVIRO	ଜ ା ୦	Geos Unit ⁻ Ipswi	11 Br	e Envi	ironmental ell Barns	1 OF 1 HOLE No. WS206	SHEET

ob No 392	nd off Fir C	overt Read		Client					
ob No 392	nd off Fir C	avort Daad							TRIAL PIT NO
392				M Scott Properties Ltd					SK4
		Date 11-02-19	Groun	d Level (m)	Coordinates	()			U IN I
Fieldwork		11-02-19		Logged By		,			Sheet
Fieldwork امص	ву ILLT			CS					1 of 1
Depth).00-0.35	TOPSOIL (I	Dark brown fine to coar	DESCRIPT	ION		Legend	Depth	No	Remarks/Tests
0.35-2.00	- subangula _ (SHERING) - - - - - - - - - - - - - - - - - - -	r flint. HAM CLIFFS FORMATIO		ase SAND. Gravel of fine ts with fine and medium					Trial pit completed at 2.0m
 4	1.3 ions in metr 33333333333				Sh	oring/Su	ıpport:		
All dimens	ions in metr	es Method Trial Pit/t	rench	Plant	Sta Used2.7T Me	ability:			hecked By SG

TRIAL DIT LOC

Land off Fir Covert Road M Scott Properties Ltd SK5 Job No Date 11-02-19 Ground Level (m) Coordinates () . Fieldwork By Logged By Sheet 1 of 1 DRULT CS 1 of 1 Odd-40 TOPSOIL (Dark thrown slightly gravelly fine to coarse SAND. Gravel is fine Benth No Remarks/Texts 0.00-0.40 Orangish brown gravelly fine to coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine Image: Coarse SAND. Gravel is fine Image: Coarse SAND. Gravel is fine	•				TRIAL PI	LOG				
Job No Date 11-02-19 Ground Level (m) Coordinates () SKS Ide No 11-02-19 Itoged By . . . Ide No DRILT CS . . . Depth No Remarks/Tests . . . 0.00-0.0 TOPSOIL (Dark brown slight) gravelly fine to coarse SAND. Gravel is fine and medium subrounded flint) . . . 0.40-2.00 Orangish brown gravelly fine to coarse SAND. Gravel is fine and medium 	-									TRIAL PIT No
John Coll Det 11-02-19 Distant Leter (if) Distant Leter (if) Fieldwork By Logged By Sheet 1 of 1 Depth TOPSOL (Dark brown slipht) gravelly fine to coarse SAND. Gravel is fine Image: Comparison of the standard stress of the stress of the standard stress of the standard stress of the		id off Fir C							SK5	
Fieldwork By Logged By Sheet DRILT CS 1 of 1 Opent DESCRIPTION Logend Depth No Remarks/Tests 0.00-0.40 TOPSOIL (Dark brown slight) gravelly fine to coarse SAND. Gravel is fine Image: Coarse SAND. Gravel is fine Image: Coarse SAND. Gravel is fine 0.40-2.00 Corangish brown gravelly fine to coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium Image: Coarse SAND. Gravel is fine and medium		21,GI	Date 11-02-19 11-02-19	Groun	d Level (m)	Coordinates				UNU
Depth DESCRIPTION Lagend Depth No Remarks/Tests 0.00-0.40 TOPSOIL (Dark brown slight) gravelly fine to coarse SAND. Gravel is fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine 0.40-2.00 Orangish brown gravelly fine to coarse SAND. Gravel is fine and medium Image: Comparison of the subangular fine Image: Comparison of the subangular fine (SHERINGHAM CLIFFS FORMATION) Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine Image: Comparison of the subangular fine					Logged By					Sheet
0.00-0.40 TOPSOL (Dark brown slightyl gravelly fine to coarse SAND. Gravel is fine and medium subrounded flint) and medium subrounded flint. 0.40-2.00 Orangich brown gravelly fine to coarse SAND. Gravel is fine and medium to subrequise flint. 0.40-2.00 Orangich brown gravelly fine to coarse SAND. Gravel is fine and medium to subrequise flint. (SHERINGHAM CLIFFS FORMATION) Image: Start and St	DRI	LLT			CS					1 of 1
D.40-2.00 Orangish brown gravelly fine to coarse SAND. Gravel is fine and medium (SHE RINGHAM CLIFFS FORMATION) Image: Shoring / Support:	Depth						Legend	Depth	No	Remarks/Tests
0.3 Shoring/Support:		- Orangish I - subangula	prown gravelly fine to a	coarse SAN						Trial pit completed at 2.0m
	k	1.3				Sh	oring/Su	upport:		
		ions in met	<u>+</u>	trench	Dlant	Sta	ability:			hecked By SG

Land off Fir Covert Road M Scott Properties Ltd SKG Job No Date 11-02-19 Ground Level (m) Coordinates () . Fieldwork By Logged By . 1 of 1 Depth DC SCONTANTION Loggend Depth No Remarks/Tests 0.00-0.00 TOPSOII (Dark brown slightly gravelly fine to coarse SAND. Gravel of fine medium subangular to subounded flint). Image: Stangular to subounded flint. Image: Stangular to subounded flint. <th></th> <th></th> <th></th> <th></th> <th>TRIAL PIT</th> <th>LOG</th> <th></th> <th></th> <th></th> <th></th>					TRIAL PIT	LOG				
Job No Date 11-02-19 Ground Level (m) Coordinates () SK6 Fieldwork By Logged By CS Sheet 1 of 1 Depth DCS 1 of 1 1 of 1 Depth DDSCRIPTION Legend Depth No Remarks/Tests 0.00-0.40 TOPSOIL (Dark brown slightly gravelly fine to coarse SAND. Gravel of fine subangular to subounded flint) Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Coarse SAND. Gravel is fine and medium subangular to subrounded flint. Image: Co										TRIAL PIT No
John Tomas Date 11-02-19 11-02-19 Orden betwee (inf) Coordinates () Fieldwork By DRILLT Logged By CS Sheet Depth DESCRIPTION Legend Depth No Remarks/Tests 0.00-0.40 TOPSOIL (Dark brown slightly gravelly fine to coarse SAND. Gravel of fine subangular to subounded flint) Image: Coordinates () No Remarks/Tests 0.40-2.00 Orangish brown slightly gravelly fine to coarse SAND. Gravel is fine and medium subangular to subrounded flint. (SHERINGHAM CLIFFS FORMATION) Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () 0.40-2.00 Orangish brown slightly gravelly fine to coarse SAND. Gravel is fine and medium subangular to subrounded flint. (SHERINGHAM CLIFFS FORMATION) Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates () Image: Coordinates ()		d off Fir C					SKE			
3921,GI 11-02-19 , see the second seco			11-02-19	Ground	d Level (m)	Coordinates	()			510
DRILLT CS 1 of 1 Depth DESCRIPTION Legend Depth No Remarks/Tests 0.00-0.40 TOPSOIL (Dark brown slightly gravelly fine to coarse SAND. Gravel of fine subangular to subcounded flint) Image: Construction of the subcounded flint) Image: Cons			11-02-19				,			
Depth DESCRIPTION Legend Depth No Remarks/Tests 0.00-0.40 TOPSOIL (Dark brown slightly gravelly fine to coarse SAND. Gravel of fine subangular to subounded flint) 0.40-2.00 Orangish brown slightly gravelly fine to coarse SAND. Gravel is fine and medium subangular to subrounded flint. (SHERINGHAM CLIFFS FORMATION) - - - - - - - - - - - - -										
0.00-0.40 TOPSOIL (Dark brown slightly gravelly fine to coarse SAND. Gravel of fine subangular to subounded flint) Orangish brown slightly gravelly fine to coarse SAND. Gravel is fine and medium subangular to subrounded flint. (SHERINGHAM CLIFFS FORMATION) Trial pit Trial pit completed at 2.0m	DRI				CS					1 of 1
0.40-2.00 Orangish brown slightly gravelly fine to coarse SAND. Gravel is fine and medium subangular to subrounded flint. (SHERINGHAM CLIFFS FORMATION) The subrounded flint of the subrounded flint							Legend	Depth	No	Remarks/Tests
h 1.3		- Orangish k - medium su (SHERING) - - - - - - - - - - - - -	prown slightly gravelly f ubangular to subrounde HAM CLIFFS FORMATIO							Trial pit completed at 2.0m
	⊨	1.3	0.3 L res Method Trial Pit/1	ronch	Diant	Sh Sta Jsed2.7T Meo	oring/Su ability:	pport:		necked By

Ducient				TRIAL PI	ILUG				
Project				Client					TRIAL PIT No
	d off Fir C	overt Road		ott Propertie				TP201	
Job No 392	21,GI	Date 15-05-19 15-05-19	Groun	d Level (m)	Coordinate				11 201
Fieldwork				Logged By		,			Sheet
GEL	_			SG					1 of 1
Depth			DESCRIPT	ION		Legend	Depth	No	Remarks/Tests
Depth 0.00-0.35 0.35-2.20	- - - Pale yellov frequent r	Dark grey slightly clayey ional medium roots and	own slight	SAND with frequent fine roots angular gravel of chert) slightly silty fine SAND with			Depth	No	Remarks/Tests
×	1.80				S S	horing/Su tability: S	ipport: M itable	None	
×	1.80	T 0.35			S S t UsedMECHA		ipport: N itable	None	

DYNAMIC PROBE LOG

Project									PROBE No
Land off Fir C									DP02
Job No	Date	12-02-19	Ground Level (m)	Coordinates:				DP02
3921,GI		12-02-19 12-02-19							
Contractor									Sheet
									1 of 1
Depth Readi (m) (blows/1	ngs		Diagram (N	100 Va	ues)			Torque	P Demerles
(m) (blows/1	00mm)) 5	10	15	20	25	30	(Nm)	Remarks
1									
2 2	2								
	3 3						Í		-
							į		
4	4						ļ		
_ 1 5 _	4								-
5									-
	6 6								
5 5									
5	5								-
2 3	4						İ		-
							i		
-	3 4								-
							ļ		-
4	3								-
3 4	3								-
									-
	4 4								-
6	-		-						-
	8						į		-
	6								-
			-						-
C C C C C C C C C C C C C C C C C C C	6 10								-
	10								-
8	6								-
a. 5	4								-
									-
10, 21									-
					I		i		GENERAL
Hammer Wt (kg)		63.5	_						REMARKS
Hammer Drop (mr	n)	750							
Cone Dia (mm)		50.5							
Cone Type		DPSH							
1001 4 3 3 1001 10 10 1 1001 1 8 10 1001 1 8 10 1001 1 8 10 1001 1 8 10 1001 1 8 10 1001 1 1 8 1001 1 1 10 1001 1 1 10 1001 1 1 10 1001 1 1 10 1001 1 1 10 1001 1 1 10 1001 1 1 10 1001 1 1 10 1001 1 1 10 1001 1 1 10 10101 1 1 10 10101 1 10 10 10101 1 10 10 10101 1 10 10 10101 </td <td>s Cli</td> <td>ent M Scott Pro</td> <td>perties Ltd</td> <td>Method/ Plant Use</td> <td>^dDynamic F</td> <td>Probesa</td> <td>mpling</td> <td></td> <td>Logged By CS</td>	s Cli	ent M Scott Pro	perties Ltd	Method/ Plant Use	^d Dynamic F	Probesa	mpling		Logged By CS

DYNAMIC PROBE LOG

Project	Project									PROBE No
	nd off Fir Cov		bad							DP03
Job No		Date	12-02-19	Ground I	Level (m)	Coordinate	IS:			DF03
	21,GI		12-02-19							
Contractor										Sheet
	1		1							1 of 1
Depth	Reading (blows/100	<u>js</u>		Diagra	am (N100 V	alues)			Torqu (Nm)	Remarks
(m)	(blows/100)mm)	5	10	15	20	25	30	(Nm)	Remarks
-	0									-
-	1 2	0								-
-		2 3								-
-	2 3							İ		-
-	2	3						i		-
- 1	2	2						ļ		_
_	3 3	~								-
		3 5								-
	4									-
	6	5								-
- 2	6	6								-
	9 9	-								-
E		9 7						Í		-
-	7 7							İ		-
	8	6						İ		-
- 3	6	6								-
	6 5	-								-
		5 5								-
-	4 5									-
)/6/19	4	4								-
⁺ - 4	4	4								-
3.1.0	5 4	0								-
AGS		6 6								-
	7 8									-
	8	8						İ		-
<u>19</u> <u>6</u> <u>6</u>		8						i		-
1-05-								ļ		-
AD, 2										-
4011 210 210 2100 2100 2100 2100 2100 21	r Wt (kg)		63.5							GENERAL
				-						REMARKS
	r Drop (mm)		750	_						
Cone Di	a (mm)		50.5							
			DPSH	1						
	,he			-						
Damper										
All dimen	sions in metres e 1:34.375	Clie	ent M Scott Pro	perties L	td Methoo Plant U	∜ ^{lsed} Dynamic	Prohow	ampling		Logged By CS
₹						ynamic	- FIUDE S	anping		03

DYNAMIC PROBE LOG

Project	PROBE No					
Land off Fir Cov						DP05
Job No	Date 12-02-19	Ground Level (m) Coordinate	S:		DF05
3921,GI	12-02-19					Object
Contractor						Sheet
					1	1 of 1
Depth Reading (m) (blows/100	js	Diagram (N	100 Values)		Torque	Remarks
(m) (blows/100	mm) 5	10 1	5 20	25 30	(Nm)	Remarks
					-	
F I	3				-	
3					-	
	6 _ <u> </u>					
- 1 ₅	5				-	
6 5						
	6					
7 6						-
6	5				-	
2 4	5				-	
					-	
-	6				-	
6 7						
7	7				-	
-3 7	7				-	-
6					-	
	6				-	
7 7					-	
	7				-	
	8					
8					-	
					-	
	6					
ີຍ_ 5	10					
0.01-10.0					-	
0,21-0					-	
						GENERAL
Hammer Wt (kg)	63.5					REMARKS
Hammer Drop (mm)	750					
Cone Dia (mm)	50.5					
Cone Type	DPSH					
61/901 4 7 8 1 4 7 8 1 8 7 9 1 5 9 1 1 5 1 1 1 1 7 9 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
All dimensions in metres	Client M Scott Pro	perties Ltd	Method/ Plant UsedDynamic	Probe sampling	L	ogged By CS

DYNAMIC PROBE LOG

Project					PROBE No					
	Land off Fir Covert Road					DP07				
Job No		Date	12-02-19	Ground	d Level (m)	Coordinate	es:			DFUI
	21,GI		12-02-19							
Contracto	ſ									Sheet
			1						1	1 of 1
Depth	Reading (blows/100	gs		Diagr	ram (N100	Values)			Torque (Nm)	Remarks
(m)	(blows/100)mm)	5	10	15	20	25	30	(Nm)	Remarks
	1							 		-
-	1 2	2								-
-		3 3								-
-	2 2 2							İ		-
	3	2						İ		-
_ 1	4	3								-
-	4 3	~								-
_		3 4								-
-	3 4									-
	4	3								-
- 2	3	4								-
E C	4 3							l		-
Ę		4 5						ĺ		-
L	6 5							İ		-
L	6	6								_
- 3	5	6								-
	6 5	_								
		6 7								-
	8 7]
)/6/19	7	7								
[₽] ⊢4	8	9								-
9. - -	12 12									-
AGS		11 12						Í		-
	11 12							İ		-
	10	9								-
lag- 5		12								-
1-05-1										-
AD, 2										-
	erWt(kg)		63.5							GENERAL
				-						REMARKS
Hamme	r Drop (mm)		750							
Cone D	ia(mm)		50.5							
			DPSH							
	yhe			-						
Dampe	·									
40101 40233DYNAMIC PROBE 3921,GI FIR COVERT ROAD, 21-05-19,GPJ GINT STD AGS 3, 1.GDT 10,061 10,071 1	nsions in metres e 1:34.375	Clie	ent M Scott Pro	operties	Ltd Meth Plant	^{od/} ^{Used} Dynami	cProbe≈	ampling		Logged By CS
έ <u>μ</u>					- ,					

					200				
Project				Client					TRIAL PIT No
	nd off Fir C	overt Road			Properties				CBR201
15-05-19			Ground L	evel (m)	Coordinates	; ()			
	21,GI	15-05-19				,			
Fieldwork	-			Logged By					Sheet
GEI	<u> </u>			SG					1 of 1
Depth			DESCRIPTIO			Legend	Depth	No	Remarks/Tests
0.00-0.35	- Dark orang (SHERING)	Dark brownish grey orga rare coarse roots) gish brown silty fine SAN HAM CLIFFS FORMATION		SAND with fr	equent fine		0.50	18	Trial pit completed at 0.7m.
×	 ions in metr	- -1			Sh	oring/S	upport:	None	
L		¥			31	αυπτγ.	Stable		
All dimens	ions in metr	es Method Trial Pit/t	rench	Plant U	sedHAND			(Checked By
scale 1:8.33	33333333333	333							SG

TRIAL PIT LOG

Appendix 6 – Infiltration Test Results

Infiltration Test Results (SK1 to SK6 and TP201)

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0.0	1.35
0.5	1.37
1.0	1.41
2.0	1.45
3.0	1.49
4.0	1.53
5.0	1.56
6.0	1.60
7.0	1.63
8.0	1.65
9.0	1.67
10.0	1.69
11.0	1.71
12.0	1.72
14.0	1.77
15.0	1.78
16.0	1.79
17.0	1.80
18.0	1.81
19.0	1.82
20.0	1.83
21.0	1.84

Pit Size [m]						
Length	Width	Depth				
1.20	0.30	2.00				
1.20	0.30	2.00				
Infiltratio	on Rate Calcu	lations				
Parameter	Unit	Result				
	height					
h ₇₅	[m]	1.838				
h ₂₅	[m]	1.513				
h ₇₅ -h ₂₅	[m]	0.325				
time						
t ₇₅	[s]	1260.00				
t ₂₅	[s]	225.00				
t ₇₅ - t ₂₅	[S]	1035.00				
ef	fective volume					
V ₇₅₋₂₅	[m ³]	0.035				
effective area						
ap ₅₀	[m ²]	1.335				
soil infiltration rate						
f	[m/s]	2.54E-05				

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Calculated by JD

Backfilled with 20mm gravel to 0.4m bgl.

Trial Pit	SK1
Run	1 of 3
Test Date	12/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0.0	1.30
1.0	1.34
2.0	1.39
3.0	1.43
4.0	1.46
5.0	1.48
10.0	1.60
15.0	1.70
20.0	1.76
25.0	1.82
27.0	1.84

Pit Size [m]					
Width	Depth				
0.30	2.00				
	Result				
[m]	1.824				
[m]	1.471				
[m]	0.353				
time					
[s]	1560.00				
[s]	270.00				
[s]	1290.00				
[m³]	0.038				
effective area					
[m ²]	1.418				
coll infiltration rate					
[m/s]	2.08E-05				
	0.30 on Rate Calcu Unit height [m] [m] time [s] [s] [s] fective volume [m ³]				

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with 20mm gravel to 0.4m bgl.

Trial Pit	SK1
Run	2 of 3
Test Date	12/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0.0	1.30
0.5	1.32
1.0	1.35
2.0	1.38
3.0	1.41
4.0	1.44
5.0	1.47
15.0	1.66
20.0	1.73
25.0	1.79
30.0	1.83
00.0	1.00

	Pit Size [m]					
Length	Width	Depth				
1.20	0.30	2.00				
Infiltrati	on Rate Calcu	lations				
Parameter	Unit	Result				
	height					
h ₇₅	[m]	1.825				
h ₂₅	[m]	1.475				
h ₇₅ -h ₂₅	[m]	0.350				
time						
t ₇₅	[s]	1800.00				
t ₂₅	[s]	330.00				
t ₇₅ - t ₂₅	[s]	1470.00				
ef	fective volume					
V ₇₅₋₂₅	[m ³]	0.038				
effective area						
ap ₅₀	[m ²]	1.410				
	l infiltration rat	0				
f	[m/s]	1.82E-05				

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with 20mm gravel to 0.4m bgl.

Trial Pit	SK1
Run	3 of 3
Test Date	13/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.00
1	1.05
2	1.10
3	1.13
4	1.15
5	1.17
10	1.24
20	1.33
30	1.38
45	1.44
60	1.49
120	1.65
180	1.73
240	1.80

Pit Size [m]		
Length	Width	Depth
1.40	0.30	2.02
Lofiltzati	an Data Calar	lations
	on Rate Calcu	
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.765
h ₂₅	[m]	1.255
h ₇₅ -h ₂₅	[m]	0.510
	time	
t ₇₅	[S]	12360.00
t ₂₅	[s]	720.00
t ₇₅ - t ₂₅	[S]	11640.00
	fective volume	
V ₇₅₋₂₅	[m ³]	0.064
effective area		
	[m ²]	2.154
ap ₅₀	[111]	2.154
soil infiltration rate		
f	[m/s]	2.56E-06
		I

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Calculated by JD

Backfilled with gravel to 0.4m bgl.

Trial Pit	SK2
Run	1 of 3
Test Date	12/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.19
1	1.22
2	1.25
3	1.27
4	1.29
5	1.29
10	1.34
15	1.36
20	1.38
45	1.45
65	1.50
120	1.59
180	1.74
210	1.79
222	1.810

Pit Size [m]		
Length	Width	Depth
1.40	0.30	2.02
Infiltratio	on Rate Calcu	lations
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.813
h ₂₅	[m]	1.398
h ₇₅ -h ₂₅	[m]	0.415
	time	
t ₇₅	[s]	13320.00
t ₂₅	[s]	1560.00
t ₇₅ - t ₂₅	[s]	11760.00
ef	fective volume	
V ₇₅₋₂₅	[m ³]	0.052
effective area		
ap ₅₀	[m ²]	1.831
soil infiltration rate		
f	[m/s]	2.43E-06

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Calculated by JD

Backfilled with gravel to 0.4m bgl.

Trial Pit	SK2
Run	2 of 3
Test Date	12/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.00
1	1.06
2	1.10
3	1.12
4	1.14
5	1.17
10	1.25
15	1.29
55	1.41
102	1.50
150	1.56
300	1.74
325	1.77
020	1.77

Pit Size [m]		
Length	Width	Depth
1.40	0.30	2.02
Infiltrati	on Rate Calcu	lations
	Unit	
Parameter		Result
	height	
h ₇₅	[m]	1.765
h ₂₅	[m]	1.255
h ₇₅ -h ₂₅	[m]	0.510
	time	
t ₇₅	[s]	18900.00
t ₂₅	[s]	660.00
t ₇₅ - t ₂₅	[S]	18240.00
ef	fective volume	
V ₇₅₋₂₅	[m ³]	0.064
effective area		
ap ₅₀	[m ²]	2.154
soil infiltration rate		
f	[m/s]	1.64E-06

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with gravel to 0.4m bgl.

SK2
3 of 3
13/02/2019
N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Depth to
Water
[mbgl]
1.14
1.24
1.34
1.43
1.54
1.63
1.70
1.77
1.84
1.88

Pit Size [m]		
Length	Width	Depth
1.35	0.30	2.00
Infiltrati	on Rate Calcu	lations
Parameter	Unit	Result
Parameter	height	Result
h		1.785
h ₇₅	[m]	
h ₂₅	[m]	1.355
h ₇₅ -h ₂₅	[m]	0.430
	time	
t ₇₅	[S]	378.00
t ₂₅	[s]	60.00
t ₇₅ - t ₂₅	[s]	318.00
effective volume		
V ₇₅₋₂₅	[m ³]	0.052
effective area		
ap ₅₀	[m ²]	1.824
soil infiltration rate		
f	[m/s]	9.01E-05

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with 20mm gravel to 0.4m bgl.

Trial Pit	SK3
Run	1 of 3
Test Date	12/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.05
0.5	1.09
1	1.16
2	1.22
3	1.32
4	1.47
5	1.56
6	1.63
7	1.70
8	1.76
10	1.86

	Pit Size [m]		
Length	Width	Depth	
1.35	0.30	2.00	
	on Rate Calcu		
Parameter	Unit	Result	
	height		
h ₇₅	[m]	1.763	
h ₂₅	[m] 1.2		
h ₇₅ -h ₂₅	₇₅ -h ₂₅ [m] 0		
	time		
t ₇₅	[s]	480.00	
t ₂₅	[s]	168.00	
t ₇₅ - t ₂₅	[s]	312.00	
ef	fective volume		
V ₇₅₋₂₅	[m ³]	0.058	
effective area			
ap ₅₀	[m ²]	1.973	
soil infiltration rate			
f	[m/s]	9.38E-05	

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with 20mm gravel to 0.4m bgl.

Trial Pit	SK3
Run	2 of 3
Test Date	12/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

21/06/2019 Date:

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.11
0.5	1.18
1	1.23
2	1.31
3	1.38
4	1.46
5	1.52
6	1.57
7	1.62
8	1.67
9	1.72
10	1.76
11	1.80
12	1.85

Pit Size [m]			
Length	Width	Depth	
1.35	0.30	2.00	
Lefiltest	an Data Cala	lations	
	on Rate Calcu		
Parameter	Unit	Result	
	height		
h ₇₅	[m]	1.778	
h ₂₅	[m]	1.333	
h ₇₅ -h ₂₅	[m] 0.4		
	time		
t ₇₅	[s]	624.00	
t ₂₅	[s]	144.00	
t ₇₅ - t ₂₅	[s]	480.00	
effective volume			
V ₇₅₋₂₅	[m ³]	0.054	
effective area			
ap ₅₀	[m ²]	1.874	
soil infiltration rate			
f	[m/s]	6.01E-05	

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with 20mm gravel to 0.4m bgl.

Trial Pit	SK3
Run	3 of 3
Test Date	13/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.19
0.5	1.26
1	1.31
2	1.42
3	1.50
4	1.55
5	1.61
6	1.65
7	1.69
8	1.72
9	1.76
10	1.79
11	1.82

Pit Size [m]			
Length	Width	Depth	
1.30	0.30	1.97	
l ofiltooti	an Data Calar	lations	
	on Rate Calcu		
Parameter	Unit	Result	
	height		
h ₇₅	[m]	1.775	
h ₂₅	[m]	1.385	
h ₇₅ -h ₂₅ [m]		0.390	
time			
t ₇₅	[s]	558.00	
t ₂₅	[s]	102.00	
t ₇₅ - t ₂₅	[S]	456.00	
effective volume			
V ₇₅₋₂₅	[m ³]	0.046	
effective area			
ap ₅₀ [m ²] 1.0		1.638	
soil infiltration rate			
f	[m/s]	6.11E-05	

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with 20mm gravel to 0.4m bgl.

Trial Pit	SK4
Run	1 of 3
Test Date	12/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.14
0.5	1.18
1	1.22
2	1.31
3	1.37
4	1.42
5	1.48
6	1.53
7	1.57
8	1.60
9	1.64
10	1.67
11	1.70
12	1.73
13	1.76

Pit Size [m]			
Length	Width	Depth	
1.30	0.30	1.97	
	on Rate Calcu		
Parameter	Unit	Result	
	height		
h ₇₅	[m]	1.763	
h ₂₅ [m] 1.3			
h ₇₅ -h ₂₅	[m] 0.4		
	time		
t ₇₅	[s]	780.00	
t ₂₅	[s]	150.00	
t ₇₅ - t ₂₅	[s]	630.00	
ef	fective volume		
V ₇₅₋₂₅ [m ³]		0.049	
effective area			
ap ₅₀	[m ²]	1.718	
· · · ·			
soil infiltration rate			
f	[m/s]	4.49E-05	

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with 20mm gravel to 0.4m bgl.

Trial Pit	SK4
Run	2 of 3
Test Date	12/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.12
0.5	1.16
1	1.20
2	1.27
3	1.33
4	1.39
5	1.43
6	1.48
7	1.53
8	1.57
9	1.60
10	1.64
11	1.67
12	1.70
13	1.73
14	1.75
15	1.77

Pit Size [m]		
Length	Width	Depth
1.30	0.30	1.97
	on Rate Calcu	
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.758
h ₂₅	[m]	1.333
h ₇₅ -h ₂₅	[m]	0.425
	time	
t ₇₅	[S]	870.00
t ₂₅	[s]	180.00
t ₇₅ - t ₂₅	[s]	690.00
effective volume		
V ₇₅₋₂₅	[m ³]	0.050
effective area		
ap ₅₀	[m ²]	1.750
soil infiltration rate		
f	[m/s]	1.24E-05

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with 20mm gravel to 0.4m bgl.

SK4
3 of 3
13/02/2019
N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.08
1	1.13
2	1.16
3	1.19
4	1.20
5	1.21
13	1.30
20	1.37
25	1.41
30	1.44
45	1.52
60	1.60
75	1.67
90	1.73
95	1.74
100	1.76
103	1.77

Pit Size [m]		
Length	Width	Depth
1.30	0.30	2.00
	on Rate Calcu	
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.770
h ₂₅	[m]	1.310
h ₇₅ -h ₂₅	[m]	0.460
	time	
t ₇₅	[s]	6120.00
t ₂₅	[s]	780.00
t ₇₅ - t ₂₅	[s]	5340.00
effective volume		
V ₇₅₋₂₅	[m ³]	0.054
effective area		
ap ₅₀	[m ²]	1.862
	l infiltration rat	
f	[m/s]	5.41E-06

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with 20mm gravel to 0.4m bgl.

Trial Pit	SK5
Run	1 of 3
Test Date	12/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.12
1	1.14
2	1.16
3	1.17
4	1.18
5	1.19
10	1.24
25	1.33
35	1.39
60	1.49
120	1.59
180	1.70
240	1.75
300	1.78

Pit Size [m]		
Length	Width	Depth
1.30	0.30	2.00
Infiltrati	on Rate Calcu	lations
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.780
h ₂₅	[m]	1.340
h ₇₅ -h ₂₅	[m]	0.440
	time	
t ₇₅	[S]	16860.00
t ₂₅	[s]	1560.00
t ₇₅ - t ₂₅	[s]	15300.00
effective volume		
V ₇₅₋₂₅	[m ³]	0.051
effective area		
ap ₅₀	[m ²]	1.798
soil infiltration rate		
f	[m/s]	1.87E-06

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Calculated by JD

Backfilled with 20mm gravel to 0.4m bgl.

Trial Pit	SK5
Run	2 of 3
Test Date	13/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.02
1	1.05
2	1.07
3	1.09
4	1.10
5	1.12
10	1.19
15	1.24
20	1.28
30	1.34
50	1.44
60	1.49
80	1.55
120	1.66
135	1.70
165	1.77

Pit Size [m]		
Width	Depth	
0.30	2.00	
on Rate Calci	lations	
	Result	
	Reserve	
[m]	1.755	
[m]	1.265	
[m]	0.490	
·		
time		
[s]	9420.00	
[s]	1020.00	
[s]	8400.00	
	2	
[m³]	0.057	
	1.050	
[[m]	1.958	
soil infiltration rate		
[m/s]	3.49E-06	
	0.30 on Rate Calcu Unit height [m] [m] [m] time [s] [s] [s] ffective volume [m ³] effective area [m ²]	

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Calculated by JD

Backfilled with 20mm gravel to 0.4m bgl.

Trial Pit	SK5
Run	3 of 3
Test Date	13/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.29
1	1.37
2	1.44
3	1.48
4	1.52
5	1.54
6	1.57
7	1.59
8	1.60
9	1.62
10	1.64
11	1.65
15	1.70
20	1.75
25	1.80
30	1.85

Pit Size [m]			
Width	Depth		
0.30	2.00		
on Rate Calcu	ulations		
Unit	Result		
height			
[m]	1.823		
[m]	1.468		
[m]	0.355		
time			
[s]	1620.00		
[s]	150.00		
[s]	1470.00		
-			
fective volume	2		
[m ³]	0.042		
V ₇₅₋₂₅ [m [°]] 0.042			
effective area			
[m ²]	1.526		
soil infiltration rate			
[m/s]	1.85E-05		
	Width 0.30 on Rate Calcu Unit height [m] [m] [m] time [s] [s] [s] fective volume [m ³] effective area [m ²] l infiltration rat		

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with 20mm gravel to 0.4m bgl.

SK6
1 of 3
11/02/2019
N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.26
1	1.31
2	1.36
3	1.40
4	1.43
5	1.45
6	1.48
7	1.51
8	1.53
9	1.55
10	1.57
15	1.65
20	1.70
25	1.75
30	1.80
35	1.84

Pit Size [m]		
Length	Width	Depth
1.30	0.30	2.00
1.30	0.30	2.00
Infiltratio	on Rate Calcu	lations
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.815
h ₂₅	[m]	1.445
h ₇₅ -h ₂₅	[m]	0.370
, 0 20		
	time	
t ₇₅	[s]	1920.00
t ₂₅	[s]	300.00
t ₇₅ - t ₂₅	[S]	1620.00
· · · ·		
effective volume		
V ₇₅₋₂₅	[m ³]	0.043
effective area		
ap ₅₀	[m ²]	1.574
soil infiltration rate		
f	[m/s]	1.70E-05

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with 20mm gravel to 0.4m bgl.

Trial Pit	SK6
Run	2 of 3
Test Date	11/02/2019
Groundwater Encountered:	N/A

Remarks:

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land Off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Time	Depth to
	Water
[min]	[mbgl]
0	1.15
1	1.25
2	1.31
3	1.36
4	1.41
5	1.43
6	1.46
7	1.48
8	1.51
9	1.54
10	1.55
15	1.66
20	1.70
25	1.76
30	1.80

I	Pit Size [m]	
Length	Width	Depth
1.30	0.30	2.00
	on Rate Calcu	
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.788
h ₂₅	[m]	1.363
h ₇₅ -h ₂₅	[m]	0.425
	time	
t ₇₅	[s]	1680.00
t ₂₅	[s]	180.00
t ₇₅ - t ₂₅	[S]	1500.00
ef	fective volume	
V ₇₅₋₂₅	[m ³]	0.050
effective area		
ap ₅₀	[m ²]	1.750
soil infiltration rate		
f		-
I	[m/s]	1.89E-05

Effective volume adjausted by a factor of 0.3 to account for gravel backfill.

Backfilled with 20mm gravel to 0.4m bgl.

SK6
3 of 3
12/02/2019
N/A

Remarks:

Project Number:

3921,GI

21/06/2019 Date:

Project Name:

Land at Fir Covert Road, Taverham

Time	Depth to
	Water
[min]	[mbgl]
0	1.21
2	1.24
3	1.27
4	1.29
5	1.31
10	1.37
15	1.41
20	1.45
30	1.49
40	1.53

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pit Size [m]		
Infiltration Rate Calculations Parameter Unit Result h_{75} [m] 1.473 h_{25} [m] 1.298 h_{75} - h_{25} [m] 0.175 time time t_{75} [s] 1500.00 t_{25} [s] 261.00 t_{75} - t_{25} [s] 1239.00 effective volume v_{75-25} [m ³] 0.110 effective area ap_{50} [m ²] 1.383 soil infiltration rate	Length	Width	Depth
Parameter Unit Result h ₇₅ [m] 1.473 h ₂₅ [m] 1.298 h ₇₅ -h ₂₅ [m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 1500.00 t ₂₅₅ (s] 1239.00 (m] 0.110 effective volume V V (m³) 0.110 (m²) 1.383 (m²) 1.383	1.80	0.35	1.56
Parameter Unit Result h ₇₅ [m] 1.473 h ₂₅ [m] 1.298 h ₇₅ -h ₂₅ [m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 0.175 (m] 1500.00 t ₂₅₅ (s] 1239.00 (m] 0.110 effective volume V V (m³) 0.110 (m²) 1.383 (m²) 1.383	l efiltest	an Data Calar	lations
$\begin{tabular}{ c c c c c } \hline height \\ \hline h_{75} & [m] & 1.473 \\ \hline h_{25} & [m] & 1.298 \\ \hline h_{75} - h_{25} & [m] & 0.175 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Result
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	h ₇₅		1.473
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	h ₂₅	[m]	1.298
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	h ₇₅ -h ₂₅	[m]	0.175
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		time	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	t ₇₅	[s]	1500.00
effective volume V ₇₅₋₂₅ [m ³] 0.110 effective area ap ₅₀ [m ²] 1.383 soil infiltration rate	t ₂₅	[s]	261.00
V75-25 [m³] 0.110 effective area ap50 [m²] 1.383 soil infiltration rate ap50 [m²] 1.383	t ₇₅ - t ₂₅	[s]	1239.00
V75-25 [m³] 0.110 effective area ap50 [m²] 1.383 soil infiltration rate ap50 [m²] 1.383			
effective area ap ₅₀ [m ²] 1.383 soil infiltration rate	ef		
ap ₅₀ [m ²] 1.383 soil infiltration rate	V ₇₅₋₂₅	[m³]	0.110
ap ₅₀ [m ²] 1.383 soil infiltration rate	official is area		
soil infiltration rate			1 000
I I	ap ₅₀	[[[]]	1.383
	soil infiltration rate		
[III/S] 0.44E-00			
	1	[111/5]	0.44E-03

Trial Pit	TP201
Run	1 of 3
Test Date	15/05/2019
Groundwater Encountered:	N/A

Remarks:

Calculated by SG

Project Number:

3921,GI

Date: 21/06/2019

Project Name:

Land at Fir Covert Road, Taverham

Time	Depth to
	Water
[min]	[mbgl]
0	1.03
2	1.06
3	1.08
4	1.12
5	1.12 1.14
10	1.15
15	1.20
20	1.25
30	1.32
40	1.40
50	1.42
65	1.44

$\begin{tabular}{ c c c c } \hline h_{75} & [m] & [m$	
Infiltration Rate CalculationsParameterUnitRheighth h_{75} [m] h_{25} [m] h_{75} - h_{25} [m] h_{75} - h_{25} [m] t_{75} [s] 35 t_{25} [s] t_{75} - t_{25} [s] r_{75} - t_{25} [s] $effective volume$ v_{75-25} $[m^3]$ $effective area$:h
Parameter Unit R height h h ₇₅ [m] 1 h ₂₅ [m] 1 h ₇₅ -h ₂₅ [m] 1 time 1 1 t ₇₅ [s] 35 t ₂₅ [s] 70 t ₇₅ - t ₂₅ [s] 280 effective volume V V ₇₅₋₂₅ [m³] 0	, 5
Parameter Unit R height h h ₇₅ [m] 1 h ₂₅ [m] 1 h ₇₅ -h ₂₅ [m] 1 time 1 1 t ₇₅ [s] 35 t ₂₅ [s] 70 t ₇₅ - t ₂₅ [s] 280 effective volume V V ₇₅₋₂₅ [m³] 0	
$\begin{tabular}{ c c c c } \hline h_{75} & [m] & [m] & [n$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	esult
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.428
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.163
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.265
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.00
effective volume V ₇₅₋₂₅ [m ³] (effective area	02.00
V ₇₅₋₂₅ [m ³] (effective area	00.80
V ₇₅₋₂₅ [m ³] (effective area	
effective area	
Г21	0.167
Г21	
	1 770
	1.770
soil infiltration rate	
	6E-05
[111/5] 5.30	12-03

Trial Pit	TP201
Run	2 of 3
Test Date	15/05/2019
Groundwater Encountered:	N/A

Remarks:

Calculated by SG

Project Number:

3921,GI

21/06/2019 Date:

Project Name:

Land at Fir Covert Road, Taverham

Time	Depth to
	Water
[min]	[mbgl]
0	1.10
1	1.13
2	1.15
3	1.16
4	1.18
5	1.20
10	1.25
15	1.32
20	1.35
30	1.42
40	1.46
45	1.48

	Pit Size [m]	
Length	Width	Depth
2.20	0.35	1.60
	on Rate Calcu	
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.475
h ₂₅	[m]	1.225
h ₇₅ -h ₂₅	[m]	0.250
	time	
t ₇₅	[s]	2610.00
t ₂₅	[s]	450.00
t ₇₅ - t ₂₅	[s]	2160.00
ef	fective volume	
V ₇₅₋₂₅	[m ³]	0.193
	effective area	
ap ₅₀	[m ²]	2.045
	· · · · · · · · · · · · · · · · · · ·	
soi	l infiltration rat	е
f	[m/s]	4.36E-05

Trial Pit	TP201
Run	3 of 3
Test Date	15/06/2019
Groundwater Encountered:	N/A

Remarks:

Calculated by SG

Appendix 7 – Gas and Groundwater Monitoring Data

Ground Gas and Groundwater Monitoring (WS01, WS06, WS08, WS11, WS13, WS17)

Project Number: 3710,SK

Project Name: Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

xploratory	y Hole Locati	ion	WS01										Date of Installation	12/02/2	2019
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (%	Carbon Dioxide (% v/v)	Oxygen (%	Flow Rate (I/hr)	H2S (ppm)	CO (ppm)	VOC (ppm)	Water Level (mbgl)	Base of Well (mbgl)	Weather Conditions	Comme Rise or	ents / Pressure Fall
1st visit	20/02/2019	1015	nm	nm	nm	nm	nm	nm	nm	nm	Dry	0.79	Cold, Overcast, Wet, Calm	Well va	ndalised
2nd visit	24/02/2019	1030	< 0.1	<2	nm	nm	nm	nm	nm	nm	Dry	2.94	Warm, Sunny, Dry, Calm		tion of protective
3rd visit	01/03/2019	1013	< 0.1	<2	0.2	20.5	-0.3	0	0	0	Dry	2.94	Cool, Overcast, Damp, Breezy	top-hat	cover, ment of bung and
4th visit	08/03/2019	1005	< 0.1	<2	0.3	20.2	-0.5	0	0	0	Dry	2.94	Cold, sunny, damp, breezy		field of buring and
5th visit	15/03/2019	997	< 0.1	<2	0.1	20.4	-0.1	0	0	0	Dry	2.94	Cool, sunny, dry, very windy		
6th visit	21/03/2019	1027	< 0.1	<2	0.2	20.3	-0.4	0	0	0	Dry	2.94	Cool, cloudy, dry, calm		
EMARKS:										nm	Not measu		Ionitoring Visit		
25.C							K	EY:		1	2		3 4 5	ć	KEY:
							_			0.0 🔶			+ +		
20.0)		<u>}</u>	-	-			Methane (% v/v)							
-							_			1.0					
⊡ 15.0															Groundwa
TE I									Ê						Level (mb
entral									-						
oncentral 0.01	,							Dioxide	oth	2.0					
Concentration Concentration Concentration)						_		Depth	2.0					
Concentrat Concentrat Concentrat							_	Dioxide							
								Dioxide (% v/v)		3.0	Where arc	oundwate	recorded at 0.0 m - no ground	lwater	
								Dioxide		3.0	Where gro		recorded at 0 0 m - no ground ntered during monitoring	lwater	

Project Number: 3710,SK

Project Name: Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

xploratory	y Hole Locati	on	WS06										Date of Insta	llation	12/02/	2019
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (%	Carbon Dioxide (% v/v)	Oxygen (%	Flow Rate (I/hr)	H2S (ppm)	CO (ppm)	VOC (ppm)	Water Level (mbgl)	Base of Well (mbgl)	Weather Con	ditions	Comm Rise of	ents / Pressure r Fall
1st visit	20/02/2019	1015	< 0.1	<2	0.3	20.0	0.0	0	0	0	Dry	2.93	Cool, Overcast	, Dry, Windy		
2nd visit	24/02/2019	1030	< 0.1	<2	0.5	20.3	-0.1	0	0	0	Dry	3.05	Warm, Sunny,	Dry, Calm		
3rd visit	01/03/2019	1013	< 0.1	<2	0.5	20.3	-0.1	0	0	0	Dry	3.05	Cool, Overcast	, Damp, Breezy	,	
4th visit	08/03/2019	1005	< 0.1	<2	0.3	20.1	-0.6	0	0	0	Dry	3.05	Cold, sunny, da	amp, breezy		
5th visit	15/03/2019	997	< 0.1	<2	0.8	19.7	-0.3	0	0	0	Dry	3.05	Cool, sunny, di	ry, very windy		
6th visit	21/03/2019	1027	< 0.1	<2	0.9	19.6	-0.4	0	0	0	Dry	3.05	Cool, cloudy, d	lry, calm		
	<u>,</u>											N	Ionitoring Visit			
25.0)						K	KEY:		1	2		3	4 5		6 KEY:
20.0		-						Methane		0.0						
20.0								(% v/v)								-
0 15.0										1.0						_
trati									Ê							Groundwat Level (mbg
0.01 Concentration Concentration)						_	Carbon Dioxide (% v/v)	Depth (m	2.0						-
5.0)									3.0						-
0.0								Oxygen (% v/v)			Where gro		r recorded at 0 ntered during r		Indwater	-
	1	2	3	4	5		6			4.0			I			L

Project Number: 3710,SK

Project Name: Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

xploratory	y Hole Locati	on	WS08										Date of Installation		12/02/2	019
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (%	Carbon Dioxide (% v/v)	Oxygen (%	Flow Rate (I/hr)	H2S (ppm)	CO (ppm)	VOC (ppm)	Water Level (mbgl)	Base of Well (mbgl)	Weather Conditions		Comme Rise or	ents / Pressure Fall
1st visit	20/02/2019	1015	< 0.1	<2	0.7	19.6	0.0	0	0	0	Dry	3.81	Cold, Overcast, Wet, Calr	n		
2nd visit	24/02/2019	1031	< 0.1	<2	0.6	20.2	-0.1	0	0	0	Dry	3.81	Warm, Sunny, Dry, Calm			
3rd visit	01/03/2019	1013	< 0.1	<2	1.0	19.7	-0.1	0	0	0	Dry	3.81	Cool, Overcast, Damp, Bi	reezy		
4th visit	08/03/2019	1005	< 0.1	<2	0.9	19.5	-0.3	0	0	0	Dry	3.81	Cold, sunny, damp, breez	zy		
5th visit	15/03/2019	997	< 0.1	<2	0.9	19.5	-0.1	0	0	0	Dry	3.81	Cool, sunny, dry, very wi	ndy		
6th visit	21/03/2019	1027	< 0.1	<2	0.8	19.4	-0.4	0	0	0	Dry	3.81	Cool, cloudy, dry, calm			
										nm	Not measu					
EMARKS:												N	Ionitoring Visit			
25.0)						K	EY:		1	2		Nonitoring Visit	5	6	KEY:
)						_			0.0	2		-	5	e	KEY:
			•					EY: Methane (% v/v)		0.0	2		-	5		KEY:
25.0 20.0								Methane		0.0	2		-	5		KEY:
25.0 20.0								Methane		1.0	2		-	5		Groundwa
25.C 20.C								Methane (% v/v)		1.0	2		-	5		Groundwa
25.C 20.C								Methane (% v/v) Carbon Dioxide		1.0	2		-	5		Groundwa
25.C								Methane (% v/v) Carbon			2		-	5		Groundwa
25.C 20.C								Methane (% v/v) Carbon Dioxide	Depth (m)	2.0	2		-	5		Groundwa
25.0 20.0 15.0 15.0 0 10.0								Methane (% v/v) Carbon Dioxide	Depth (m)	2.0		bundwate	-	groundv		Groundwa

PAGE 3 of 6

Project Number: 3710,SK

Project Name: Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

Exploratory	y Hole Locati	on	WS11										Date of Installation	13	3/02/2019	
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (%	Carbon Dioxide (% v/v)	Oxygen (%	Flow Rate (I/hr)	H2S (ppm)	CO (ppm)	VOC (ppm)	Water Level (mbgl)	Base of Well (mbgl)	Weather Conditions		omments / Pre se or Fall	essure
1st visit	20/02/2019	1015	< 0.1	<2	0.9	19.2	0.0	0	0	0	Dry	3.88	Cool, Overcast, Dry, Winc	У		
2nd visit	24/02/2019	1032	< 0.1	<2	0.5	20.3	-0.3	0	0	0	Dry	3.96	Warm, Sunny, Dry, Calm			
3rd visit	01/03/2019	1014	< 0.1	<2	0.8	20.1	-0.3	0	0	0	Dry	3.96	Cool, Overcast, Damp, Br	eezy		
4th visit	08/03/2019	1006	< 0.1	<2	0.7	19.9	-0.6	0	0	0	Dry	3.96	Cold, sunny, damp, breez	y		
5th visit	15/03/2019	997	< 0.1	<2	0.3	20.2	-0.1	0	0	0	Dry	3.96	Cool, sunny, dry, very wir	ndy		
6th visit	21/03/2019	1027	< 0.1	<2	1.2	19.1	-0.3	0	0	0	Dry	3.96	Cool, cloudy, dry, calm			
25.0)						K	EY:		1	2		lonitoring Visit	5	6 KEY:	
							_			0.0						
20.0		+	•					Methane (% v/v)								
O 15.0 O ncentration O 10.0)									1.0						roundwat evel (mbę
цар Цар Цар Цар Цар Цар Цар Цар Цар Цар Ц							_	Carbon Dioxide (% v/v)	Depth (r	2.0						
5.0										3.0				_		
								Oxygen			Where gro	oundwate encour	recorded at 0 0 m - no pattered during monitoring	groundwat	ter	
0.0	,	+					-	(% v/v)								

Project Number: 3710,SK

Project Name: Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

proratory	y Hole Locati	on	WS13										Date of Installation	13/02/2	2019
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (%	Carbon Dioxide (% v/v)	Oxygen (%	Flow Rate (I/hr)	H2S (ppm)	CO (ppm)	VOC (ppm)	Water Level (mbgl)	Base of Well (mbgl)	Weather Conditions	Comme Rise or	ents / Pressure Fall
1st visit	20/02/2019	1015	< 0.1	<2	0.6	19.8	0.0	0	0	0	Dry	3.02	Cool, Overcast, Dry, Windy		
2nd visit	24/02/2019	1032	< 0.1	<2	0.3	19.9	-0.1	0	0	0	Dry	3.06	Warm, Sunny, Drty, Calm		
3rd visit	01/03/2019	1013	< 0.1	<2	0.7	20.1	-0.4	0	0	0	Dry	3.05	Cool, Overcast, Damp, Breezy		
4th visit	08/03/2019	1004	< 0.1	<2	0.5	20.0	-0.4	0	0	0	Dry	3.05	Cold, sunny, damp, breezy		
5th visit	15/03/2019	997	< 0.1	<2	1.6	18.4	-0.4	0	0	0	Dry	3.05	Cool, sunny, dry, very windy		
6th visit	21/03/2019	1027	< 0.1	<2	2.0	17.6	-0.6	0	0	0	Dry	3.05	Cool, cloudy, dry, calm		
												N	Nonitoring Visit		
25.0)														
							_ к	EY:		1	2		3 4 5	e	KEY:
							_			0.0	2		3 4 5	E	KEY:
20.0		•					_	XEY: Methane (% v/v)		0.0	2		3 4 5		KEY:
		•	+	-			_	Methane			2		3 4 5		, KEY:
		+					_	Methane		1.0	2		3 4 5		
							_	Methane		1.0	2		3 4 5		Groundwa
								Methane		1.0	2		3 4 5		Groundwa
no 12.0								Methane (% v/v) Carbon			2		3 4 5		Groundwa
Concentration Concentration O 10.0								Methane (% v/v) Carbon Dioxide	Depth (m)	2.0	2		3 4 5		Groundwa
								Methane (% v/v) Carbon Dioxide (% v/v)	Depth (m)	2.0					Groundwa
Concentration Concentration Concentration								Methane (% v/v) Carbon Dioxide	Depth (m)	2.0		pundwate	3 4 5		Groundwa

Project Number: 3710,SK

Project Name: Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL.

xplorator	y Hole Locati	on	WS17										Date of Installation	13/02/2	2019
Return Visit #	Monitoring Date	Atmospheric Pressure (mb)	Methane (% v/v)	Content (%	Carbon Dioxide (% v/v)	Oxygen (%	Flow Rate (I/hr)	H2S (ppm)	CO (ppm)	VOC (ppm)	Water Level (mbgl)	Base of Well (mbgl)	Weather Conditions	Comme Rise or	ents / Pressure ⁻ Fall
1st visit	20/02/2019	1015	< 0.1	<2	0.4	19.8	0.0	0	0	0	Dry	2.93	Cool, Overcast, Dry, Windy		
2nd visit	24/02/2019	1032	< 0.1	<2	0.8	20.0	-0.3	0	0	0	Dry	3.04	Warm, Sunny, Dry, Calm		
3rd visit	01/03/2019	1013	< 0.1	<2	0.6	19.9	-0.3	0	0	0	Dry	3.05	Cool, Overcast, Damp, Breezy		
4th visit	08/03/2019	1006	< 0.1	<2	0.7	19.9	-0.6	0	0	0	Dry	3.04	Cold, sunny, damp, breezy		
5th visit	15/03/2019	997	< 0.1	<2	1.2	19.4	O. 1	0	0	0	Dry	3.04	Cool, sunny, dry, very windy		
6th visit	21/03/2019	1027	< 0.1	<2	0.7	19.9	-0.3	0	0	0	Dry	3.04	Cool, cloudy, dry, calm		
25.0) (K	KEY:		1	2		Ionitoring Visit		KEY:
							_			0.0	2		3 4 5		
20.0		•	•	-				Methane (% v/v)							
ation 15.0	0									1.0					Groundwa Level (mb
Ē								Carbon Dioxide	th (r	2.0					
Concentration Concentration								(% v/v)	Dep						
0.00 UCC 00 00 5.0										3.0					
										3.0	Where gro		recorded at 0.0 m - no grountered during monitoring	ndwater	

Appendix 8 – Environmental Laboratory Test Results

19-02308.2 19-02415.2 19-06966.1

Carl Sullivan Geosphere Environmental Ltd Brightwell Barns Ipswich Road Brightwell Suffolk IP10 OBJ

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 19-02308

Site Reference:	Taverham (NR8 6HL)
Project / Job Ref:	3921,GI
Order No:	3921,GI
Sample Receipt Date:	15/02/2019
Sample Scheduled Date:	19/02/2019
Report Issue Number:	2
Reporting Date:	17/06/2019

Authorised by:

Mary

Dave Ashworth Deputy Quality Manager

This report supersedes 19-02308, issue no.1. Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate								
DETS Report No: 19-02308			Date Sampled	12/02/19	12/02/19	12/02/19	12/02/19	12/02/19
Geosphere Environmental Ltd		Time Sampled		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Taverham (NR8 6HL)		TP / BH No		WS01	WS01	WS04	WS06	WS11
Drojact / Joh Dafi, 2021 Cl		Additional Refs		EC1	FCO	EC1	ES1	ES1
Project / Job Ref: 3921,GI		Depth (m)		ES1 0.20 - 0.30	ES2 1.10 - 1.20	ES1 0.10 - 0.20	0.20 - 0.30	0.20 - 0.50
Order No: 3921,GI Reporting Date: 17/06/2019		DETS Sample No		390906	390907	390908	390909	<u> </u>
Reporting Date. 17706/2019		DI	ETS Sample NO	390900	340407	390908	390909	390911
Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected			Not Detected	Not Detected
рН рН	Units	N/a	MCERTS	7.4	7.3		6.4	6.4
Total Cyanide r	ng/kg	< 2	NONE	< 2			< 2	< 2
Complex Cyanide r	ng/kg	< 2	NONE	< 2			< 2	< 2
Free Cyanide r	ng/kg	< 2	NONE	< 2			< 2	< 2
Total Sulphate as SO ₄ r	ng/kg	< 200	NONE		< 200			
Total Sulphate as SO ₄	%	< 0.02	NONE		< 0.02			
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	< 10	20		15	< 10
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01	0.02		0.02	< 0.01
Organic Matter	%	< 0.1	MCERTS	1.1			1.6	1.4
Arsenic (As) r	ng/kg	< 2	MCERTS	6		6	6	6
Barium (Ba) r	ng/kg	< 5	NONE	9			10	16
Beryllium (Be) r	ng/kg	< 0.5	NONE	< 0.5			< 0.5	< 0.5
W/S Boron r	ng/kg	< 1	NONE	< 1		< 1	< 1	< 1
Cadmium (Cd) r	ng/kg	< 0.2	MCERTS	< 0.2		< 0.2	< 0.2	< 0.2
Chromium (Cr) r	ng/kg	< 2	MCERTS	7		8	7	7
Chromium (hexavalent) r	ng/kg	< 2	NONE	< 2			< 2	< 2
Copper (Cu) r	ng/kg	< 4	MCERTS	4		< 4	< 4	< 4
Lead (Pb) r	ng/kg	< 3	MCERTS	10		11	10	12
Mercury (Hg) r	ng/kg	< 1	NONE	< 1		< 1	< 1	< 1
Molybdenum (Mo) r	ng/kg	< 1	NONE	< 1			< 1	< 1
Nickel (Ni) r	ng/kg	< 3	MCERTS	7		5	5	5
Selenium (Se) r	ng/kg	< 3	NONE	< 3		< 3	< 3	< 3
Vanadium (V) r	ng/kg	< 2	NONE	22			21	18
Zinc (Zn) r	ng/kg	< 3	MCERTS	31		23	28	22
EPH (C10 - C40) r	ng/kg	< 6	MCERTS	23			19	10

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Subcontracted analysis (S)

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate								
DETS Report No: 19-02308			Date Sampled	12/02/19	12/02/19	12/02/19	12/02/19	
Geosphere Environmental Ltd		Time Sampled		None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Taverham (NR8 6HL)		TP / BH No		WS13	WS14	WS14	WS17	
Project / Job Ref: 3921,GI		Additional Refs		ES1	ES1	ES2	ES1	
Order No: 3921,GI		Depth (m)		0.10 - 0.20	0.10 - 0.20	1.50 - 1.60	0.20 - 0.30	
Reporting Date: 17/06/2019		DETS Sample No		390912	390913	390914	390915	
Determinand	Unit	RL						
Asbestos Screen ^(S)	N/a	N/a	ISO17025	Not Detected			Not Detected	
рН	pH Units	N/a	MCERTS	6.2		6.5	6.5	
Total Cyanide	mg/kg	< 2	NONE	< 2			< 2	
Complex Cyanide	mg/kg	< 2	NONE	< 2			< 2	
Free Cyanide	mg/kg	< 2	NONE	< 2			< 2	
Total Sulphate as SO ₄	mg/kg	< 200	NONE			< 200		
Total Sulphate as SO₄	%	< 0.02	NONE			< 0.02		
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	< 10		< 10	< 10	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01		< 0.01	< 0.01	
Organic Matter	%	< 0.1	MCERTS	1.4			1.3	
Arsenic (As)	mg/kg	< 2	MCERTS	5	7		5	
Barium (Ba)	mg/kg	< 5	NONE	18			16	
Beryllium (Be)	mg/kg	< 0.5	NONE	< 0.5			< 0.5	
W/S Boron	mg/kg	< 1	NONE	< 1	< 1		< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2		< 0.2	
Chromium (Cr)	mg/kg	< 2	MCERTS	7	8		8	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2			< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	< 4	< 4		< 4	
Lead (Pb)	mg/kg	< 3	MCERTS	13	13		12	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1		< 1	
Molybdenum (Mo)	mg/kg	< 1	NONE	< 1			< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	5	5		5	
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3		< 3	
Vanadium (V)	mg/kg	< 2	NONE	17			18	
Zinc (Zn)	mg/kg	< 3	MCERTS	24	28		23	
EPH (C10 - C40)	mg/kg	< 6	MCERTS	10			< 6	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Subcontracted analysis (S)

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate	- Speciated PAHs							
DETS Report No: 19-02308			Date Sampled	12/02/19	12/02/19	12/02/19	12/02/19	12/02/19
Geosphere Environmental Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Taverham (NR8 6HL)		TP / BH No		WS01	WS06	WS11	WS13	WS17
Project / Job Ref: 3921,GI		Additional Refs		ES1	ES1	ES1	ES1	ES1
Order No: 3921,GI		Depth (m)		0.20 - 0.30	0.20 - 0.30	0.20 - 0.50	0.10 - 0.20	0.20 - 0.30
Reporting Date: 17/06/2019		DETS Sample No		390906	390909	390911	390912	390915
Determinand	Unit		Accreditation		T			
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg		MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.12	< 0.1	< 0.1	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.15	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 19-02308	
Geosphere Environmental Ltd	
Site Reference: Taverham (NR8 6HL)	
Project / Job Ref: 3921,GI	
Order No: 3921,GI	
Reporting Date: 17/06/2019	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
390906	WS01	ES1	0.20 - 0.30	7.8	Brown sand with vegetation
390907	WS01	ES2	1.10 - 1.20	7.7	Orange sand
390908	WS04	ES1	0.10 - 0.20	6.8	Brown sand with vegetation
390909	WS06	ES1	0.20 - 0.30	7.6	Brown sand with stones and vegetation
390911	WS11	ES1	0.20 - 0.50	6.7	Brown sand with vegetation
390912	WS13	ES1	0.10 - 0.20	8.5	Brown sand with vegetation
390913	WS14	ES1	0.10 - 0.20	10.7	Brown sand with vegetation
390914	WS14	ES2	1.50 - 1.60	7.3	Orange sand
390915	WS17	ES1	0.20 - 0.30	9.6	Brown sand with vegetation

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample^{1/S} Unsuitable Sample^{U/S}

Soil Analysis Certificate - Methodology & Miscellaneous Infor DETS Report No: 19-02308	mation	
Geosphere Environmental Ltd		
Site Reference: Taverham (NR8 6HL)		
Project / Job Ref: 3921,GI		
Order No: 3921,GI		
Reporting Date: 17/06/2019		
Matrix Analysed Determinand	Brief Method Description	Method

Matrix	Analysed	Determinand	Brief Method Description	
	On			No
Soil	D		Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cvanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D			E020
			Determination of elemental sulphur by solvent extraction followed by GC-MS Determination of acetone/hexane extractable hydrocarbons by GC-FID	E020 E004
Soil	AR			
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (11) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D		Determination of nitrate by extraction with water & analysed by ion chromatography	E009
			Determination of organic matter by oxidising with potassium dichromate followed by titration with	
Soil	D	Organic Matter	iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E007
Soil	D			E021
			Determination of phosphate by extraction with water & analysed by ion chromatography	
Soil	D		Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	E013
Soil			Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)		E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
			Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried

AR As Received

Carl Sullivan Geosphere Environmental Ltd Brightwell Barns Ipswich Road Brightwell Suffolk IP10 OBJ

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 19-02415

Site Reference:	Taverham (NR8 6HL)
Project / Job Ref:	3921,GI
Order No:	3921,GI
Sample Receipt Date:	20/02/2019
Sample Scheduled Date:	20/02/2019
Report Issue Number:	2
Reporting Date:	17/06/2019

Authorised by:

Mary

Dave Ashworth Deputy Quality Manager

This report supersedes 19-02415, issue no.1. Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate						
DETS Report No: 19-02415			Date Sampled	18/02/19		
Geosphere Environmental Ltd	Geosphere Environmental Ltd			None Supplied		
Site Reference: Taverham (NR8 6HL)			TP / BH No	WS07		
Project / Job Ref: 3921,GI		A	Additional Refs	None Supplied		
Order No: 3921,GI	Order No: 3921,GI		Depth (m)	1.70 - 1.80		
Reporting Date: 17/06/2019		DETS Sample No		391305		
Determinand	Unit	RL	Accreditation			
pH pH Units		N/a	MCERTS	7.9		
W/S Sulphate as SO ₄ (2:1) mg/l		< 10	MCERTS	< 10		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C Subcontracted analysis (S)

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 19-02415	
Geosphere Environmental Ltd	
Site Reference: Taverham (NR8 6HL)	
Project / Job Ref: 3921,GI	
Order No: 3921,GI	
Reporting Date: 17/06/2019	

DETS San	nple No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
	391305	WS07	None Supplied	1.70 - 1.80	8.3	Orange sand

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample 1/S

Unsuitable Sample U/S

Soil Analysis Certificate - Methodology & Miscellaneous Infor	mation	
DETS Report No: 19-02415		
Geosphere Environmental Ltd		
Site Reference: Taverham (NR8 6HL)		
Project / Job Ref: 3921,GI		
Order No: 3921,GI		
Reporting Date: 17/06/2019		
Matrix Analysed Determinand	Brief Method Description	Method

Matrix	Analysed	Determinand Brief Method Description		Method
0.11	On			No
Soil	D		Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
0.11	6	<u>C12-C16, C16-C21, C21-C40</u>)		5000
Soil	D	Fluoride - Water Soluble		E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) subpate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)		E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)		E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E014 E018
Soil	D		Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E018 E024
			Determination of total supplue by extraction with aqua-regia followed by rcp-oes Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by	
Soil	AR	SVOC	GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried

AR As Received

Stephen Gilchrist Geosphere Environmental Ltd Brightwell Barns Ipswich Road Brightwell Suffolk IP10 OBJ

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 19-06966

Site Reference:	Fir Covert Road, Taverham, Norwich
Project / Job Ref:	3921,GI
Order No:	3921,GI
Sample Receipt Date:	17/05/2019
Sample Scheduled Date:	17/05/2019
Report Issue Number:	1
Reporting Date:	24/05/2019

Authorised by:

Dave Ashworth Deputy Quality Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate					
DETS Report No: 19-06966	Date Sampled	15/05/19	15/05/19	15/05/19	
Geosphere Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Fir Covert Road, Taverham, Norwich	TP / BH No	WS201	WS203	WS205	
Project / Job Ref: 3921,GI	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: 3921,GI	Depth (m)	0.15	0.10	0.10	
Reporting Date: 24/05/2019	DETS Sample No	409047	409048	409049	

Determinand	Unit	RL	Accreditation				
Asbestos Screen ^(S)	N/a	N/a	ISO17025	Not Detected			
рН	pH Units	N/a	MCERTS	6.6	6.7	6.7	
Total Cyanide	mg/kg	< 2	NONE	< 2			
Complex Cyanide	mg/kg	< 2	NONE	< 2			
Free Cyanide	mg/kg	< 2	NONE	< 2			
W/S Sulphate as SO_4 (2:1)	mg/l	< 10	MCERTS	< 10			
W/S Sulphate as SO_4 (2:1)	g/l	< 0.01	MCERTS	< 0.01			
Organic Matter	%	< 0.1	MCERTS	3.6	1	1.9	
Arsenic (As)	mg/kg	< 2	MCERTS	5	4	7	
Barium (Ba)	mg/kg	< 5	NONE	9	10	8	
Beryllium (Be)	mg/kg	< 0.5	NONE	< 0.5	< 0.5	< 0.5	
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	
Chromium (Cr)	mg/kg	< 2	MCERTS	5	5	7	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2			
Copper (Cu)	mg/kg	< 4	MCERTS	< 4	< 4	5	
Lead (Pb)	mg/kg	< 3	MCERTS	17	4	8	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	
Molybdenum (Mo)	mg/kg	< 1	NONE	< 1			
Nickel (Ni)	mg/kg	< 3	MCERTS	< 3	< 3	5	
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	
Vanadium (V)	mg/kg	< 2	NONE	15	13	19	
Zinc (Zn)	mg/kg	< 3	MCERTS	20	11	30	
EPH (C10 - C40)	mg/kg	< 6	MCERTS	28			

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs				
DETS Report No: 19-06966	Date Sampled	15/05/19		
Geosphere Environmental Ltd	Time Sampled	None Supplied		
Site Reference: Fir Covert Road, Taverham, Norwich	TP / BH No	WS201		
Project / Job Ref: 3921,GI	Additional Refs	None Supplied		
Order No: 3921,GI	Depth (m)	0.15		
Reporting Date: 24/05/2019	DETS Sample No	409047		

Determinand	Unit	RL	Accreditation		
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 19-06966	
Geosphere Environmental Ltd	
Site Reference: Fir Covert Road, Taverham, Norwich	
Project / Job Ref: 3921,GI	
Order No: 3921,GI	
Reporting Date: 24/05/2019	

DETS Sample No	D TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
40904	7 WS201	None Supplied	0.15	9.5	Brown loamy sand with vegetation
409048	3 WS203	None Supplied	0.10	6.2	Brown loamy sand with vegetation
409049	9 WS205	None Supplied	0.10	6.6	Brown loamy sand with vegetation

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample^{1/S}

Unsuitable Sample^{U/S}

Soil Analysis Certificate - Methodology & Miscellaneous Information	
DETS Report No: 19-06966	
Geosphere Environmental Ltd	
Site Reference: Fir Covert Road, Taverham, Norwich	
Project / Job Ref: 3921,GI	
Order No: 3921,GI	
Reporting Date: 24/05/2019	

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E002
3011	D			E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
			Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	
Soil	AR	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	ilitration with Iron (T) suphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D		Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
	D D			E013 E009
Soil			Determination of sulphate by extraction with water & analysed by ion chromatography	
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC- MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil	7 41 4			

D Dried AR As Received

Appendix 9 – Geotechnical Laboratory Test Results

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 11/06/2019

		Land off Fir Covert Road,	, Taverham, Norfolk, NR8 6HL
Serial No.	•	34711	
Client:	Geosphe	ere Environmental Ltd	Soil Property Testing Ltd
	Head Offi Brightwe Ipswich R Brightwe Suffolk IP10 OBJ	ll Barns oad	15, 16, 18 Halcyon Court, St Margaret's Way, Stukeley Meadows, Huntingdon, Cambridgeshire, PE29 6DG Tel: 01480 455579 Email: <u>enquiries@soilpropertytesting.com</u> Website: <u>www.soilpropertytesting.com</u>
Samples S	Submitte	d By:	Approved Signatories:
	·	ere Environmental Ltd	 J.C. Garner B.Eng (Hons) FGS Technical Director S.P. Townend FGS
Samples I	Land off	Fir Covert Road, Taverham NR8 6HL	Quality Manager W. Johnstone Materials Lab Manager D. Sabnis Operations Manager
Date Re	eceived:	25/02/2019 Sam	ples Tested Between: 25/02/2019 and 11/06/2019
Remarks:	For the a	attention of Mr C Sullivan Ference No: 3921,GI	
Notes:	1	All remaining samples or remr unless we are notified to the c	aants from this contract will be disposed of after 21 days from today, ontrary.
	2	(a) UKAS - United Kingdom(b) Opinions and interpreta	Accreditation Service tions expressed herein are outside the scope of UKAS accreditation
	3	Tests marked "NOT UKAS ACC Schedule for this testing labor	REDITED" in this test report are not included in the UKAS Accreditation atory.

ISSUED BY SOIL PROPERTY TESTING LTD

Contra	act		Land of	and off Fir Covert Road, Taverham, Norfolk, NR8 6HL																	
Serial	No.		34711	34711											Target Date			Date	е	11/03/2019	
Sched	uled	Ву	Geosph	Geosphere Environmental Ltd																	
			SCHEDULE OF LABORATORY								RY	TES	STS								
Sched	ule R	emarks																			
Bore Hole No.	Туре	Sample Ref.	Top Depth	6	Test Street	116-7:34	Recor	B ation													Sample Remarks
SK01	В	1	0.50	1																	
SK06	В	1	0.50	1																	
		Totals		2																	End of Schedule

ISSUED BY SOIL PROPERTY TESTING LTD

ISSUED BY SOIL PROPERTY TESTING LTD

TEST REPORT ISSUED BY SOIL PROPERTY TESTING LTD

Contract	Taverham	
Serial No.	34711-2	
Client: Geosphe	re Environmental Ltd	Soil Property Testing Ltd
Head Offic Brightwell Ipswich Ro Brightwell Suffolk IP10 OBJ	Barns bad	15, 16, 18 Halcyon Court, St Margaret's Way, Stukeley Meadows, Huntingdon, Cambridgeshire, PE29 6DG Tel: 01480 455579 Email: <u>enquiries@soilpropertytesting.com</u> Website: <u>www.soilpropertytesting.com</u>
Samples Submittee	-	Approved Signatories:
Geosphe Samples Labelled:	re Environmental Ltd	 J.C. Garner B.Eng (Hons) FGS Technical Director S.P. Townend FGS Quality Manager
Taverhan	n	 W. Johnstone Materials Lab Manager D. Sabnis Operations Manager
Date Received:	13/05/2019 S a	amples Tested Between: 13/05/2019 and 11/06/2019
	ttention of Stephen Gilderence No: 3921,GI	christ
Notes: 1	All remaining samples or re unless we are notified to th	mnants from this contract will be disposed of after 21 days from today, e contrary.
2		om Accreditation Service etations expressed herein are outside the scope of UKAS accreditation
3	Tests marked "NOT UKAS A Schedule for this testing lab	CCREDITED" in this test report are not included in the UKAS Accreditation poratory.
4	This test report may not be issuing laboratory.	reproduced other than in full except with the prior written approval of the

ISSUED BY SOIL PROPERTY TESTING LTD

Contra	act		Taverh	am															
Serial	No.		34711-	2												Targ	et Dat	te	03/06/2019
Scheduled By Geosphere Environmental Ltd																			
		SCHEDULE OF LABORATORY TESTS																	
Sched	hedule Remarks																		
Bore Hole No.	Туре	Sample Ref.	Top Depth	6. X X X														Sample Remarks	
SK1	В	1	0.50	1															•
SK6	В	1	0.50	1															
TP201	В	1	0.50	1															
WS201	В	1	0.90		1														
WS201	D	2	1.50		1														
WS205	D	1	0.90		1														
WS205	D	2	1.85		1														
		Totals		3	4														End of Schedule

TEST REPORT ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 11/06/2019

TEST REPORT ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 11/06/2019

ISSUED BY SOIL PROPERTY TESTING LTD

DATE ISSUED: 11/06/2019

Contract: Taverham

Serial No: **34711-2**

	D	ETER	MINATI	ON OF 1	THE SU	LPHATE		NTENT A	ND pH OF SOIL AND GROUNDWATE	R
Borehole	-	Sa	imple	Conc. of So Water	Ground	Conc. Of	-	% Sample Passing	Description	Remarks
/ Pit No.	(m)	Туре	Ref.	Soluble 2:1 (g/L)	Water (g/L)	SO4 (g/L)	Value	2mm Sieve		
WS201	0.90	В	1	0.11		0.14	6.1	100	Reddish yellow slightly clayey silty fine SAND with occasional light orangish brown mottling	
WS201	1.50	D	2	0.26		0.32	5.3	99	Reddish yellow and light orangish brown silty fine SAND with rare fine and medium gravel	
WS205	0.90	D	1	0.04		0.04	7.2	99	Reddish yellow and light orangish brown slightly clayey silty fine SAND with rare fine and medium gravel	
WS205	1.85	D	2	0.05		0.06	7.0	97	Reddish brown slightly clayey slightly gravelly silty fine SAND with occasional light orangish brown mottling. Gravel is white, brown and black fine and medium chert	
Method of P Method of T Type of Sam Comments: Remarks to I	est: ple Key:		BS1377: Pa U= Undistu Test not U l	rt 3: 1990: ! rbed, B= Bu (AS accredi turbance, lo	5.5 Ik, D= Dist ted Iss of mois	urbed, J= J ture, variat	ar, W= \	Water, SPT=	Extract, 5.4 Groundwater Split Spoon Sample, C= Core Cutter dure, location, and origin of test specimen within origina	al sample. Oven

Appendix 10 – Photographs

3921, GI Photographs

Photograph 2

Photograph 3

Photograph 4

GEOSPHERE ENVIRONMENTAL

DESCRIPTION

Photograph 1

Looking east across a section of the site, north

Photograph 2 Looing south east across a section of the site, north

Photograph 3 Looking north across a section of the site, south west

Photograph 4 Looking north across a section of the site, south east

PROJECT

Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL

PROJECT NUMBER

3921,GI

TITLE

Photographs at Fir Covert Road, Taverham

DATE

21/06/2019

AGE NO. 1 of 7

Photograph 6

Photograph 7

Photograph 8

GEOSPHERE ENVIRONMENTAL

DESCRIPTION

Photograph 5 Looking west across a section of the site, south

Photograph 6 Looking north west across a section of the site, middle

Photograph 7 Looking north east at a section of the site, east

Photograph 8 Trial Pit SK1

Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL

PROJECT NUMBER

3921,GI

Photographs at Fir Covert Road, Taverham

DATE 21/06/2019 PAGE NO. 2 of 7

PT01 / 30.10.18 / V2

Photograph 11

Photograph 10

Photograph 12

DESCRIPTION

Photograph 9 Trial Pit SK2

Photograph 10 Trial Pit SK3

Photograph 11 Trial Pit SK4

Photograph 12 Trial Pit SK5

Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL

PROJECT NUMBER

3921,GI

Photographs at Fir Covert Road, Taverham

 DATE

 21/06/2019

 PAGE NO.
 3 of 7

PT01 / 30.10.18 / V2

Photograph 14

Photograph 15

Photograph 16

Photograph 13 Trial Pit SK6

Photograph 14 WS01

Photograph 15 WS04

Photograph 16 WS06

Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL

3921,GI

Photographs at Fir Covert Road, Taverham

21/06/2019 4 of 7

GEO

Photograph 17 WS07

Photograph 18 WS08

Photograph 19 WS09

Photograph 20 WS10

PROJECT Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL

PROJECT NUMBER

3921,GI

Photographs at Fir Covert Road, Taverham

21/06/2019 PAGE NO. 5 of 7

Photograph 19

Photograph 20

PT01 / 30.10.18 / V2

GEOSPHERE ENVIRONMENTAL

Photograph 21 WS11

Photograph 22 WS12

Photograph 23 WS13

Photograph 24 WS14

PROJECT Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL

PROJECT NUMBER

3921,GI

Photographs at Fir Covert Road, Taverham

DATE

21/06/2019 PAGE NO. 6 of 7

Photograph 23

Photograph 24

GEO

GEOSPHERE ENVIRONMENTAL

DESCRIPTION

Photograph 25 WS15

Photograph 26 WS16

Photograph 27 WS17

Photograph 28 WS18

PROJECT Land off Fir Covert Road, Taverham, Norfolk, NR8 6HL

PROJECT NUMBER

3921,GI

Photographs at Fir Covert Road, Taverham

DATE

21/06/2019 PAGE NO. 7 of 7

Photograph 27

Photograph 28

GEOSPHERE ENVIRONMENTAL

GEOSPHERE ENVIRONMENTAL LTD

Brightwell Barns, Ipswich Road, Brightwell, Suffolk, IP100BJ **T**: 01603 298076 | 01473 353519 | **E**: info@geosphere-environmental.co.uk | **W**: geosphere-environmental.co.uk